Definition :- (The Image of Ring Homomorphism)

Let $f:(R,+,.) \rightarrow\left(R^{`},+^{`}, .,\right)$ be a ring homo. Then the image of f is denoted by Im.f or $f(R)$ and is defined by :

$$
\operatorname{Im} .(\mathrm{f})=\{\grave{a} \in \mathbf{R}: \exists a \in \mathbf{R}, \mathrm{~s} . \mathrm{t} \quad \mathrm{f}(a)=\grave{a}\}
$$

بالتالي ممكن تعريف صورة دالة التشاكل (Im.f) بالثكل التالي ويستخدم التعريف ادناه Im.f بالامثلة اذا كان المطلوب في السؤال هو استخر اج

So, Im.f $=f(R)=\{f(a): \forall a \in R\}$

Example :-

Let $\mathrm{f}:(\mathrm{Z},+,.) \longrightarrow(\mathcal{R},+,$.$) be a function such that \mathrm{f}(a)=a, \forall a \in \mathrm{Z}$ Find the image of f

Solution :-

$<$ First to show, fis ring. homo>?
$\forall a, \mathrm{~b} \in \mathrm{Z} \Rightarrow \mathrm{f}(a)=a$ and $\mathrm{f}(\mathrm{b})=\mathrm{b}$, then
1- $\mathrm{f}(a+\mathrm{b})=a+\mathrm{b}=\mathrm{f}(a)+\mathrm{f}(\mathrm{b})$.
$2-\mathrm{f}(\mathrm{a} \cdot \mathrm{b})=a \cdot \mathrm{~b}=\mathrm{f}(\mathrm{a}) \cdot \mathrm{f}(\mathrm{b})$
$\Rightarrow \mathrm{f}$ is ring. homo

$$
\begin{aligned}
\Rightarrow \operatorname{Im} \cdot \mathrm{f}=\mathrm{f}(\mathrm{Z}) & =\{\mathrm{f}(a): \forall a \in \mathrm{Z}\} \\
& =\{a: \forall a \in \mathrm{Z}\}=\mathrm{Z}
\end{aligned}
$$

(subring
Im. (f) $=\mathrm{Z}$ is a sub ring of a ring \mathcal{R},
But, Z is not ideal of a ring \mathcal{R}.
Since, $\exists 2 \in Z$, and $\exists \sqrt{7} \in \mathcal{R}$, but $2 . \sqrt{7}=2 \sqrt{7} \notin Z$.

ألتالى بعض أنواع ألتشاكل
Definition:- Let $\mathrm{f}:(\mathrm{R},+,.) \rightarrow\left(\mathrm{R}^{\prime},+^{\prime}, .,\right)$ be a function. Then
(1) f is called Monomorphism iff f is one to one and homo.
(2) f is called Epimorphism iff f is onto and homo.
(3) f is called Isomorphism iff f is one to one, onto and homo .
(4) f is called Endomorphism iff f is homomorphism and $R=\grave{R}$.
(5) fis called Automorphism iff f is isomorphism and $R=\grave{R}$.

Definition: - (Isomorphic Rings) الحلقات المتماثلة
Two rings ($R,+,$.) and ($R^{`},+^{`}, .$,) are said to be isomorphic if there exists $f: R \rightarrow R$ such that f is an isomorphism, and is denoted by ($\mathrm{R} \cong \mathrm{R}^{`}$) .

Example(1):- Let $\mathrm{f}:(\mathrm{Z},+,.) \longrightarrow(\mathrm{Z},+,$.$) be a function , S.t \mathrm{f}(\mathrm{n})=$ $\mathrm{n} .1, \forall \mathrm{n} \in \mathrm{Z}$. Show that : (f is ring homo, Epimorphism, Monomorphism, Isomorphism, Endomorphism and Automorphism)

Solution:- First to show f is ring homo

Let $\mathrm{n}, \mathrm{m} \in \mathrm{Z} \Rightarrow \mathrm{f}(\mathrm{n})=\mathrm{n} .1$ and $\mathrm{f}(\mathrm{m})=\mathrm{m} .1$, thus
$1-f(n+m)=(n+m) .1$ $=(\mathrm{n} .1)+(\mathrm{m} .1)=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{m})$
$2-\mathrm{f}(\mathrm{n} . \mathrm{m})=(\mathrm{n} . \mathrm{m}) .1$
$=(\mathrm{n} . \mathrm{m}) \cdot 1^{2}$
$=(\mathrm{n} . \mathrm{m}) 1.1$
$=(n \cdot 1) \cdot(m \cdot 1)=f(n) \cdot f(m)$
$\therefore \mathrm{f}$ is ring homomorphism ..
(i)
$<$ To show f is Epimorphism >?

by step(i), f is ring homo
$<$ Now, to show f is on to $>$?
$\because \mathrm{f}(\mathrm{Z})=\{\mathrm{f}(\mathrm{n}), \forall \mathrm{n} \in \mathrm{Z}\}$
$=\{\mathrm{n} .1, \forall \mathrm{n} \in \mathrm{Z}\}$
$=\{\mathrm{n}, \forall \mathrm{n} \in \mathrm{Z}\}=\mathrm{Z}$
$\Rightarrow \mathrm{f}$ is on to $\cdots \cdots$ (ii)
$\Rightarrow \mathrm{f}$ is Epimorphism .

Now, to show, f is Monomorphism

by step(i), f is ring homo
$<$ To show f is on to one $>$?
let $\mathrm{n}, \mathrm{m} \in \mathrm{Z}$ such that $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m}) \quad<\mathrm{T} . \mathrm{P} . \mathrm{n}=\mathrm{m}>$?
$\because \mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m})$
$\therefore \mathrm{n} .1=\mathrm{m} .1$
$\Rightarrow \mathrm{n}=\mathrm{m}$,
$\Rightarrow \mathrm{f}$ is one to one $\cdots \cdots$ (iii) $\quad \Rightarrow \mathrm{f}$ is Monomorphism .
$<$ To show f is Isomorphism $>$?
by step (i), (ii) and (iii) we get :
f is ring homo, onto and one to one $\Rightarrow \mathrm{f}$ is Isomorphism $\cdots \cdots(\mathrm{v})$
$<$ To show f is Endomorphism >?
Since, $R=Z$ and $\grave{R}=Z$
$\Rightarrow \mathrm{R}=\mathrm{R} \cdots \cdots$ (iv)
Then, we get by step(i)[f is ring homo] and by step (iv) $[\mathrm{R}=\grave{\mathrm{R}}$]
$\Rightarrow \mathrm{f}$ is Endomorphism .
$<$ To show f is Automorphism >?
By step(v)[fis isomorphism] and step(iv) [$R=\grave{R}$], then

[^0]Exc. (2):- Let $\mathrm{f}:(\mathcal{R},+,.) \longrightarrow(\mathcal{R},+,$.$) be a function such that \mathrm{f}(a)=$ $0, \forall a \in \mathcal{R}$ Is f Endomorphism ? واجب

Theorem (3.9):- Every isomorphic image of a ring without zero divisors is a ring without zero divisors .

Proof: Let $\mathrm{f}:(\mathrm{R},+,.) \longrightarrow\left(\mathrm{R}^{`},+^{`}, ..\right)$ be an isomorphism function and $(R,+,$.$) is a ring without zero divisors$
$<$ T.P. ($\left.\mathrm{R}^{\prime},+^{\prime}, ..\right)$ is a ring without zero divisors $>$?

$\because \mathrm{f}$ is $1-1$ and on to $\Rightarrow \exists!a, \mathrm{~b} \in \mathrm{R}$ s.t. $a^{`}=\mathrm{f}(a)$ and $\mathrm{b}^{`}=\mathrm{f}(\mathrm{b})$
Since, R without zero divisors
$\Rightarrow a \cdot \mathrm{~b} \neq 0$
$\Rightarrow \mathrm{f}(a \cdot \mathrm{~b}) \neq \mathrm{f}(0)$
$\Rightarrow \mathrm{f}(a){ }^{`} \mathrm{f}(\mathrm{b}) \neq 0$ (since f is homo. by $\left.\operatorname{Th}(3-1) \mathrm{f}(0)=0 `\right)$
$\Rightarrow a^{`}{ }^{`} \mathrm{~b}^{`} \neq 0$
Therefore, ($\mathrm{R}^{\prime},+^{`}, .$,) is a ring without zero divisors .

Theorem (3-10):- Every isomorphic image of field is field . واجب

[^0]: $\Rightarrow \mathrm{f}$ is Automorphism .

