<u>Definition :-</u> (The Image of Ring Homomorphism)

Let f: (R, +, .) \rightarrow (R[`], +[`], .[`]) be a ring homo. Then **the image of f** is denoted by **Im.f** or **f(R)** and is defined by :

 $\operatorname{Im} .(\mathbf{f}) = \{ \dot{a} \in \dot{\mathbf{R}} : \exists a \in \mathbf{R} , s.t \quad \mathbf{f}(a) = \dot{a} \} .$

بالتالي ممكن تعريف صورة دالة التشاكل (Im.f) بالشكل التالي ويستخدم التعريف ادناه بالامثلة اذا كان المطلوب في السؤال هو استخراج Im.f

So, Im.f = f(R) = { $f(a) : \forall a \in R$ }

Example :-

Let $f:(Z, +, .) \rightarrow (\mathcal{R}, +, .)$ be a function such that $f(a) = a, \forall a \in Z$ Find the **image of f**

<u>Solution :-</u>

< First to show, f is ring. homo>? $\forall a, b \in Z \implies f(a) = a$ and f(b) = b, then 1- f(a + b) = a + b = f(a) + f(b). 2- $f(a \cdot b) = a \cdot b = f(a) \cdot f(b)$ \implies f is ring. homo \implies Im.f = f(Z) = { f(a) : $\forall a \in Z$ } = { $a : \forall a \in Z$ } = Z. ملاحظة : من المثال اعلاه نستنتج ان صورة دالة التشاكل Im.f هو حلقة جزئية (subring) ولكن ليس من الضروري ان يكون مثالي (ideal)

Im. (f)=Z is a **sub ring** of a ring \mathcal{R} ,

But, Z is not ideal of a ring \mathcal{R} .

Since, $\exists 2 \in \mathbb{Z}$, and $\exists \sqrt{7} \in \mathcal{R}$, but $2 \cdot \sqrt{7} = 2\sqrt{7} \notin \mathbb{Z}$.

ألتالى بعض أنواع ألتشاكل

Definition :- Let f: $(R, +, .) \rightarrow (R', +', .)$ be a function. Then

(1) f is called Monomorphism iff f is one to one and homo.

(2) f is called **Epimorphism** iff f is onto and homo.

- (3) f is called **Isomorphism** iff f is one to one, onto and homo.
- (4) f is called **Endomorphism** iff f is homomorphism and $R = \dot{R}$.
- (5) f is called **Automorphism** iff f is isomorphism and $R = \dot{R}$.

الحلقات المتماثلة (Isomorphic Rings) الحلقات المتماثلة (Definition: -

Two rings (R, +, .) and (\hat{R} , +`, .`) are said to be **isomorphic** if there exists $f: R \rightarrow R$ such that f is an isomorphism , and is denoted by ($\underline{R \cong R}$).

Example(1):- Let f: $(Z, +, .) \rightarrow (Z, +, .)$ be a function, S.t f(n) = n.1, $\forall n \in Z$. Show that : (f is ring homo, Epimorphism, Monomorphism, Isomorphism, Endomorphism and Automorphism)

Solution:- First to show f is ring homo

by step(i), f is ring homo

< Now, to show f is on to>?

$$\therefore f(Z) = \{ f(n), \forall n \in Z \}$$
$$= \{ n.1, \forall n \in Z \}$$
$$= \{ n, \forall n \in Z \} = Z$$
$$\Rightarrow f is on to \cdots \cdots (ii)$$
$$\Rightarrow f is Epimorphism .$$

< To show f is Isomorphism >? by step (i), (ii) and (iii) we get : f is ring homo, onto and one to one \Rightarrow f is Isomorphism $\cdots \cdots$ (v)

< To show f is Endomorphism >?

- Since, R = Z and $\hat{R} = Z$
- \Rightarrow R= $\hat{R} \cdots \cdots (iv)$

Then, we get by step(i) [f is ring homo] and by step (iv) $[R = \hat{R}]$

 \Rightarrow f is Endomorphism .

< To show f is Automorphism >?

By step(v)[f is isomorphism] and step(iv) [$R = \hat{R}$], then

 \Rightarrow f is Automorphism .

Exc. (2):- Let f: $(\mathcal{R}, +, .) \rightarrow (\mathcal{R}, +, .)$ be a function such that $f(a) = 0, \forall a \in \mathcal{R}$ Is f Endomorphism ? واجب

<u>Theorem (3.9):-</u> Every isomorphic image of a ring without zero divisors is a ring without zero divisors .

<u>Proof</u>: Let $f:(R,+,.) \rightarrow (R,+,.)$ be an isomorphism function and (R,+,.) is a ring without zero divisors

<T.P. (\mathbf{R} , +`, ..) is a ring without zero divisors >?

واجب . Every isomorphic image of field is field . واجب