Introduction to Artificial Intelligence
and Search Algorithms

Introduction to Artificial Intelligence

What is Intelligence?

Intelligence is the ability to learn about, to learn from, to understand about,
and interact with one’s environment.

What is Artificial Intelligence (Al)?
A.l:- Is simply a way of making a computer think.

A.l:- Is the part of computer science concerned with designing intelligent
computer system that exhibit the characteristic associated with intelligent in
human behavior.

This requires many processes:-

1- Learning: - acquiring the knowledge and rules that used these
knowledge.

2- Reasoning:- Used the previous rules to access to nearly reasoning or
fixed reasoning.

Introduction to Artificial Intelligence

A.l Principles:-

1- The data structures used in knowledge representation.

2- The algorithms needed to apply that knowledge.

3- The language and programming techniques used their implementation.

What are the goals of Al research?

The central problems (or goals) of Al research include reasoning, knowledge,
planning, learning, natural language processing (communication), perception
and the ability to move and manipulate objects.

What is problem reduction meaning?

Problem Reduction means that there is a hard problem may be one that can be
reduced to a number of simple problems. Once each of the simple problems is
solved, then the hard problem has been solved.

Applications of Al

e+ Game playing

** Speech recognition

e » Understanding natural language
e+ Computer vision

o+ Expert systems

e » Heuristic classification

Characteristics of Al

e » High societal impact (affect billions of
people)

e » Diverse (language, vision, robotics)

e « Complex (really hard)

/
Search Algorithms

To successfully design and implement search algorithms, a
programmer must be able to analyze and predict their
behavior.

Many questions needed to be answered by the algorithm these
Include:

e Is the problem solver guaranteed to find a solution?

e Will the problem solver always terminate, or can it become
caught in an infinite loop?

e When a solution is found, is it guaranteed to be optimal?

e What Is the complexity of the search process In terms of
time usage? Space search?

e How can the iInterpreter be designed to most effectively
utilize a representation language?

State Space Search

e The theory of state space search is our primary tool for answering
these questions, by representing a problem as state space graph,
we can use graph theory to analyze the structure and complexity
of both the problem and procedures used to solve it.

Graph Theory:-

e A graph consists of a set of a nodes and a set of arcs or links
connecting pairs of nodes. The domain of state space search, the
nodes are interpreted to be stated in problem solving process, and
the arcs are taken to be transitions between states.

Graph theory Is our best tool for reasoning about the structure of
objects and relations.

s

-

Graph Theory

Nodes={a,b,c,d,e}
Arcs={(a,b), (a,c),(b,c),(b,e),(d,e),(d,c),(e,d)}

Nodes={a,b,c,d,e,f,g,h,i,j}
ArCS:{(a7b)!(a7C)7(a7d)7(b7e)7(b7f)7(07g)7(c7h)7(C7i)7(d7j)}

State Space Representation

A state space is represented by four tuple [N,A,S,GD], where:-

* N is a set of nodes or states of the graph. These correspond to the states in a
problem —solving process.

* A is the set of arcs between the nodes. These correspond to the steps in a
problem —solving process.

* S a nonempty subset of N, contains the start state of the problem.
* G a nonempty subset of N contains the goal state of the problem.

* A solution path:- Is a path through this graph from a node S to a
node in GD.

e

Example:- Traveling Salesman Problem

o Starting at A, find the shortest path through all the cities, visiting each city
exactly once returning to A.

The complexity of exhaustive search in the traveling Salesman is

(N-1)!, where N is the No. of cities in the graph. There are
several technique that reduce the search complexity.

1-Blind search

This type of search takes all nodes of tree in a specific order until it
reaches to goal. The order can be in the breath and the strategy will be
called breadth—first—search, or strategy will be called depth first search

A- Depth First Searh

S NVANVAN

E F G H _[J

N LA

K L M NO P o R
T v

Suppose start is A and goal is N
Open close
[Al []
[BCD] [A]
[EFCD] [AB]
[KLFCD] [ABE]
[SLFCD] [ABEK]
[LFCD] [ABEKS]
[TFCD] [ABEKSL]
[FCD] [ABEKSLT]
[LMCD] [ABEKSLT] DELET L
[CD] [ABEKSLTM]
[GHD] [ABEKSLTMC]
[NHD] [ABEKSLTMCG]

Depth first search use stack data structure.

Start A goal |

Open Close

[A] I
[BECD] [A]
[EECD] [AB]
[GHCD] [ABE]
[HCD] [ABEG]
[CD] [ABEGH]
[EFD] [ABEGH]
[ID] [ABEGH]

2-Breadth First search

w ot

Suppose start is A and goal is N

Open

[A]

[BCD]
[CDEF]
[DEFGH]
[EFGHIJ]
[FGHIJKL]
[GHIIKLM]
[HIJKLMN]
[IJKLMNOP]
[JKLMNOPQ]
[KLMNOPQR]
[LMNOPQRS]
[MNOPQRST]
[NOPQRST]

Breadth first use queue data structure

close
[
[A]
[AB]
[ABC]
[ABCD]
[ABCDE]
[ABCDEF]
[ABCDEFG]
[ABCDEFGH]
[ABCDEFGHI]
[ABCDEFGHIJ]
[ABCDEFGHIJK]
[ABCDEFGHIJKL]
[ABCDEFGHIJKLM]

OPEN CLOSE
[A] [

[BECD] [A]

[ECDE] [AB]

[CDGH] [ABE]

[DGHEF] [ABEC]

[GHFE] [ABEC]

[HF] [ABECG]

[F] [ABECGH]

[] [ABECGH]

BFS DFS

BFS starts traversal from the root node
and visits nodes in a level by level
manner (i.e., visiting the ones closest

DFS starts the traversal from the root
node and visits nodes as far as possible
from the root node (i.e., depth wise).

to the root first).
Usually implemented using a queue Usually implemented using a stack data
data structure. structure.
Generally requires more memory than Generally requires less memory than
DFS. BFS.

Optimal for finding the shortest Not optimal for finding the shortest

BFS DFS

distance. distance.
Used for finding the shortest path Used for topological sorting, solving
between two nodes, testing if a graph problems that require graph
is bipartite, finding all connected backtracking, detecting cycles in a graph,
components in a graph, etc. finding paths between two nodes, etc.

2-Heuristic search
A-Best First Search

B- Hill Climbing
C- A*

A-Best First Search

It is a search algorithm that works on a specific rule. The aim is to reach the
goal from the initial state via the shortest path.

A30
/EH CR 23
E18 F12 Go 5

Open

[A30]

[B14 C15 D23]
[F12 C15 E18 D23]
[C15 E18 D23]
[H5 G9 E18 D23]
[10 G9 E18 D23]

B-Hill Climbing

Close

[
[A30]

[A30 B14]

[A30 B14 F12]

[A30 B14 F12 C15]
[A30 B14 F12 C15 H5]

search used for mathematical optimization problems in the field of Artificial Intelligence.Given

a large set of inputs and a good heuristic function, it tries to find a sufficient good solution to

the problem. This solution may not be the global optimal maximum.

Open

[A30]
[C15 B20 D23]

[H5 G9]

[10]

A30
/th] CR 23
E1l8 F12 Go 5
10
Close
[
[A30]
[A30 C15]

[A30 C15 H5]

A30

/Blt] QR 23
E18 F12 G9o 10

10
Open Close
[A30] [
[B10 c15 D23] [A30]
[F12 E18] [A30 B10]
[[A30 B10 F12]

Problems of Hill Climbing

1. Local maximum: It is a state which is better than its neighboring state
however there exists a state which is better than it(global maximum).
This state is better because here the value of the objective function is

higher than its neighbors.

2. Global maximum : It is the best possible state in the state space
diagram. This because at this state, objective function has highest

value.

3. Plateua/flat local maximum : It is a flat region of state space where

neighboring states have the same value.

C. A*

E50

Open
[A100]

[B46 C50 F55 D65]
[F44 C50 F55 D65 E96]
[C50 D65 E96]

[H41 F42 G55 D65 E96]
[F42 G55 D65 E96]

[G55 D65 E96]

[135 D65 E96]

Close

[

[A100]

[A100 B46]

[A100 B46 F44]

[A100 B46 F44 C50]

[A100 B46 C50 H41]

[A100 B46 C50 H4L F42]
[A100 B46 C50 H41 F42 G55]

