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1- Types of polarization

a) linearly polarized

I Linear ‘+\Gtr¢ulﬂr + Elliptical

A plane electromagnetic wave is said to be linearly polarized. The transverse electric
field wave is accompanied by a magnetic field wave as illustrated.



Electric field

.

Magnetic field

N

b) Circularly polarized light consists of two perpendicular electromagnetic
plane waves of equal amplitude and 90° difference in phase. The light
illustrated is right- circularly polarized.

f light is composed of two plane waves of equal amplitude but differing in phase by
90°, then the light is said to be circularly polarized.

c) elliptical Polarization
For elliptically polarized light the electric field vector rotates at w but
varies in amplitude so that the tip traces out an ellipse in time at a
fixed position z. Elliptical polarization is the most general state and
linear and circular polarizations are simply special degenerate forms
of elliptically polarized light. Because of this generality, attributes of
this state can be applied to all polarization states.
The polarization ellipse (Fig. 4) can provide useful quantities for
describing the polarization state. The azimuthal angle a of the semi-
major ellipse axis from the x axis is given by



https://www.sciencedirect.com/topics/engineering/polarized-light
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2- Mathematical representation of Polarizer: Jones Matrix



Introducing the space and time dependence of the component vibrations,

E, = Ey ek wrted (14-2)
and

E, = Eoewitey (14-3)

for component waves traveling in the +z-direction with amplitudes Fo, and E,, and
phases ¢, and ¢,. Combining with Eq. (14-1),

E = iEﬂxei{izw—m-hpx) + jEOvei(kz—wr-i-qoyi
which may also be written
E = [iEo e + jEoe] ettt = Egglthe—on (14-4)

The bracketed quantity, separated into x-and y-components, is now recognized as
the complex amplitude E, for the polarized wave. Since the state of polarization of
the light is completely determined by the relative amplitudes and phases of these
components, we need concentrate only on the complex amplitude, written as a two-
element matrix, or Jones vector,

tan(ﬁ) = tan[sin_l (sin2BsinA) /2]. ﬂ

Polarization is right-elliptical when 0 ° < A¢ < 180 ° and tan(€) > 0 °

and left-elliptical when -180 ° < A$ <0 °and tan(e) <0 °

Jones vector

- E(}.x Eﬂxe Ox

R
Areaa

EO)* Eﬁ}? & f‘l'Py

Let us determine the particular forms for Jones vectors that describe linear. circular. elliptical
Polarization

[n this case we set Eox=0, Eoy =1



The Jones vector for vertically linearly,
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Similarly, Figure 14-2b represents horizontally polarized light, for which, letting
Eoy = 0, @ = 0, and Eo, = A,
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the case that reduces to the vertically polarized when a = 90° and to the horizontal polarized mode
when a =0°.
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Example: the jones vector for a =6 0°
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Thus the Jones vector (I/V2)[J] circularly polarized light when E rotates counterclockwise, viewed head-
on. This mode is called left-circularly polarized light or right circularly polarized light is:



It is also possible to produce elliptically polarized light with principal axes in-
clined to the xy-axes, as evident in Figure 14-4. This situation occurs when the
phase difference between component vibrations is some angle other than mar (linear
polarization) or (m + 3)mr (circular or elliptical polarization oriented symmetrically
about the xy-axes). Here m = 0, 1, 2, . . . . For example, consider the case where
E, leads E, by some angle €, that is, ¢, — ¢. = €. Taking ¢, = 0, ¢, = €,
Eo. = A, and Eo, = b, the Jones vector is

- Eo're‘(iox _ A
Fo = [Ee] - [w]
Using Euler’s theorem we write

be* = b(cos € + isin€) = B + iC

The Janes vector for this general case is then

5 A
EO—[BJriC]

The ellipse is situated in a rectangle of sides 2Ey, and 2E,,. In terms of the parame-
ters A, B, and C, the derivation of Eq. (14-9) makes clear that

Fo. = A, Eo, = VB + C?, and € = tan”' (Bg) (14-11)

Example

Analyze the Jones vector given by

B

to show that it represents elliptically polarized light.



the whose Jones vector is by Eq.
E, leads k£, by some angle €, that 18, ¢, — ¢. = €. laking ¢. = U, ¢, = €,

Eq. = A, and E,, = b, the Jones vector is

= Eg.e'x _ A
Eo _'[En,e"“’?] - [bf“]

Using Euler’s theorem we write
be* = b(cos € + isin€) = B + iC

The Jones vector for this general case is then

. A
o= [E + EC] (14-9)

is inclined at an angle a with to the x-axis, as shown in Figure 14-7. The angle of inclination is determined
from

the x-ax1s, a§ SNOWN 1N Figure 14-/. 1he angle ol INCHNation 1§ determined 1rom
2Ey.Eo, cos €

tan 2o =
EEI - Ef‘}F

(14-10

Figure 14-7 Elliptically polarized light ori-
ented at an angle relative to the x-axis.




Example

Consider the result of allowing left-circularly polarized light to pass through an
eighth-wave plate.

Selution We first need a matrix that can represent the eighth-wave plate, a
phase retarder that introduces a relative phase of 277 /8 = /4, or 45°.
Thus, letting €, = 0,

et 0 1 0
= [0 e“y] - [0 e"""}

This matrix is then allowed to operate on the Jones vector representing the left-
circularly polarized light:

o ens] L] = i ] = L]

U DHUW LML 1T 1T ODCHW ClupuLany pPuUuialilzoar gL,

Solution The light has relative phase between component vibrations of
¢, — ¢ = € = tan"'(3) = 26.6°. Since Eo, = 3 and Eo, = V22 + 12 = V5,
the inclination angle of the axis is given by

1, (Q0)VS) cos (26.6°)

a = —tan

2 9-5
With this data the ellipse can be sketched as indicated in Figure 14-7. More
precisely, the equation of the ellipse is given by

(:_;)2 i (gi)z =0 (E;) (EEOY_,) cos € = sin’ € (14-12)

For this example, the equation of the ellipse is

= 35.8°

2 2
% 4 551 —~ 0.267E.E, = 0.2

When E, lags E,, the phase angle € becomes negative and leads to the Jones vector
representing a clockwise rotation instead,

E":[Bfic}
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3- Phase Retarder.

The phase retarder does not remove either of the component orthogonal but introduces a phase
difference between them. If light to each vibration travels with different speeds through such a
retardation plate, there will be a cumulative phase difference Ap between the two waves as they
emerge.

Figure shows the effect of a retardation plate on unpolarized light in a case where the vertical travels
through the plate faster than the horizontal component. This is suggested by the schematic separation
of the two components on the optical although of course both waves are simultaneously present at
each point along the axis. The fast (FA) and slow axis (SA) directions of the plate are indicated. When the
net difference Ap = 90 ° , the retardation is called a quarter-wave when it is 90 °, it is called a half
wave plate.



Rotator. The rotator has the effect of rotating the direction of linearly po-
larized light incident on it by some particular angle. Vertical lincarly polarized light
is shown incident on a rotator in Figure 14-10. The cffect of the rotator element is to
transmit linearly polarized light whose direction of vibration has, in this case, ro-
tated counterclockwise by an angle 6.

We desire now to create a set of matrices corresponding to these three types of
polarizers so that, just as the optical element alters the polarization mode of the ac-
tual light beam, an clement matrix operating on a Jones vector will produce the same
result mathematically. We adopt a pragmatic point of view in formulating appropri-
ate matrices, For example, consider a linear polarizer with a transmission axis along
the vertical, as in Figure 14-8. Let a 2 X 2 matrix representing the polarizer oper-
ate on vertically polarized light, and let the elements of the matrix to be determined

|

Rotator

r Figure 14-10  Operation of a rotator.



be represented by letters a, b, ¢, and d. The resultant transmitted or product light in
this case must again be vertically lincarly polarized light. Symbolically,

HMIHEN

c dj|l 1

This matrix equation is equivalent to the algebraic equations
a(0) + b(1) =0

c(0) + d(1) =1

from which we conclude & = 0 and d = 1. To determine elements a and ¢, let the
same polarizer operate on horizontally polarized light. In this case no light is trans-

o - 411

The corresponding algebraic equations are now
a(l) + b(0) =0
c(l) +d0)=0
from which a = 0 and ¢ = 0. We conclude here without further proof that the ap-

propriate matrix is

M = [g (I)] linear polarizer, TA vertical (14-13)

The matrix for a linear polarizer, TA horizontal, can be obtained in a similar man-
ner and is included in Table 14-2, near the end of this chapter. Suppose next that the
linear polarizer has a TA inclined at 45° to the x-axis. To keep matters as simple as
possible we allow light linearly polarized in the same direction as—and perpendicu-
lar to—the TA to pass in turn through the polarizer. Following the approach used

L e YL



a+b=1

c+d=1
a—b=10
c—d=10
ora =b = ¢ = d = ;. Thus the correct matrix is
It 1 . .
M=5[l !] linear polarizer, TA at 45° (14-14)

In the same way, a general matrix representing a linear polarizer with TA at angle 6
can be determined. This is left as an exercise for the student. The result is

_[ cos” 6 sin&cosﬂ:l

sin @ cos 6 sin” @ (14-15)

which includes Eqgs. (14-13) and (14-14) as special cases, with 8 = 90° and 8 =
45°, respectively.

Proceeding to the case of a phase retarder, we desire a matrix that will trans-
form the clements

Ene  into  Ege®ste
and
Eo,e™r  into  Ege™rt &)

Inspection is sufficient to show that this is accomplished by the matrix operation

o el [E2] - [
0 e“r| | Eoye™ Egpetey

Thus the general form of a matrix representing a phase retarder is

M = [g IEk[:—I phase retarder (14-16)

where €, and €, represent the advance in phase of the E,- and E,-components of the
incident light. Of course, €, and €, may be negative quantities. As a special case,
consider a quarter-wave plate (QWP) for which |Ae| = 7 /2. We distinguish the
case for which €, — €, = /2 (SA vertical) from the case for which €, — €, = 7/2
(SA horizontal). In the former case, then, let €. = —7/4 and €, = + /4. Obvi-
ously, other choices—an infinite number of them—are possible, so that Jones ma-
trices, like Jones vectors, are not unique. This particular choice, however, leads to a
common form of the matrix, due to its symmetrical form:

e . 1 0
= = —iw 4 1 -
M [ 0 e*"’"’] e [U 1'] QWP, SA vertical (14-17)
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Sries [e""" 0 ] = g tls [' 0] QWP, SA vertical (14-17)
0 ei:r/d 0 :

Similarly, when €, > €,

1 0
0 =i
Corresponding matrices for half-wave plates (HWP), where | Ae | = o, are given by

M= e"'"[ ] QWP, SA horizontal (14-18)

~fr /2 ' !
M = [e -2,2] = e“"”[ 0 . ] HWP, SA vertical (14-19)

=" O |_ ]! 0] HWP, SA horizontal  (14-20)
0 e 0 -1 :

The elements of the matrices are identical in this case, since advancement of phase
by 7 is physically equivalent to retardation by 7r. The only difference lies in the
prefactors that modify the phases of all the elements of the Jones vector in the same
way and hence do not affect interpretation of the resuits.

The requirement for a rotator of angle 8 is that an E-vector oscillating linearly
at angle 6 be converted to one that oscillates linearly at angle (6 + ). Thus the ma-
trix elements must satisfy

[a b] [cos 8] _ [cos 6 + ﬁ)]
¢ d]|sin@ sin (6 + B)
acos 6 + bsin § = cos (6 + B)
ccos @ + dsin @ = sin (6 + B)
From the trigonometric identities for the sine and cosine of the sum of two angles,

cos (8 + B) = cos 8 cos B — sin 0 sin B
sin (6 + B) = sin 6 cos B + cos 8 sin B

or

it follows that
a = cos 3 ¢ = sin 8
b= —sin f3 d = cos B
so that the desired matrix is
_|cos B —sin
M = {sin B cosﬂ] rotator through angle +p (14-21)

The Jones matrices derived in this chapter are summarized in Table 14-2. As
an important example, consider the production of circularly polarized light by



TABLE 14-2 SUMMARY OF JONES MATRICES

I. Linear polarizers
00

. T 0 .
TA horizontal [U ﬂ] TA vertical [0 1

] TA al 45° o horizontal —[: ]]

1. Phase retarders
e 0
General [ﬂ e*'r]

QWP, SA vertical & f'"-f“[‘; ?] QOWP, SA horizontal E”""[:] {}‘]
HWP, SA vertical r""ﬂ[é' _f‘] HWP, SA horizontal e‘”“[é. _?]
IIL. Rotator
cos B —sin 8
Rotator 6—0+p) [sin B cos ﬂ]
Example

Consider the result of allowing left-circularly polarized light to pass through an
eighth-wave plate.

Solution We first need a matrix that can represent the eighth-wave plate, a
phase retarder that introduces a relative phase of 27 /8 = /4, or 45°.

Thus, letting €, = 0,
e 0 1 0
M= [0 e“y] - [0 e‘""}

This matrix is then allowed to operate on the Jones vector representing the left-
circularly polarized light:

o ene] [ = i = Lo



The resultant Jones vector indicates that the light is elliptically polarized, and
the components are out of phase by 135°. Using Euler's equation to expand
e™/*, we obtain

e = _\—lfi + a(%)

and using our standard notation for this case, we have

A | I
M=[ ,}, whereA=1,B=-—,ad C = —
B+iC V7 V)

Comparing this matrix with the general form in Eq. (14-5), we determine that

Eo, = 1 and Eq, = |, Making use of Eq. (14-10), we also determine that
a = —45,



