
9

2. Chapter Two

2.1. Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs

and a number of device controllers connected through a common bus that provides

access to shared memory (Figure 2.1). Each device controller is in charge of a specific

type of device (for example, disk drives, audio devices, or video displays). The CPU

and the device controllers can execute in parallel, competing for memory cycles. To

ensure orderly access to the shared memory, a memory controller synchronizes access

to the memory.

Figure 2-1 A modern computer system

For a computer to start running for instance, when it is powered up or rebooted

it needs to have an initial program to run. This initial program, or bootstrap

program, tends to be simple. Typically, it is stored within the computer hardware in

read-only memory (ROM) or electrically erasable programmable read-only memory

(EEPROM), known by the general term firmware. It initializes all aspects of the

system, from CPU registers to device controllers to memory contents. The bootstrap

program must know how to load the operating system and how to start executing that

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

10

system. To accomplish this goal, the bootstrap program must locate the operating-

system kernel and load it into memory.

Once the kernel is loaded and executing, it can start providing services to the

system and its users. Some services are provided outside of the kernel, by system

programs that are loaded into memory at boot time to become system processes, or

system daemons that run the entire time the kernel is running. On UNIX, the first

system process is ―init,‖ and it starts many other daemons. Once this phase is

complete, the system is fully booted, and the system waits for some event to occur.

2.2. I/O Interrupts

The occurrence of an event is usually signalled by an interrupt from either

the hardware or the software. Hardware may trigger an interrupt at any time by

sending a signal to the CPU, usually by way of the system bus. Software may trigger

an interrupt by executing a special operation called a system call (also called a

monitor call). When the CPU is interrupted, it stops what it is doing and immediately

transfers execution to a fixed location. The fixed location usually contains the starting

address where the service routine for the interrupt is located. The interrupt service

routine executes; on completion, the CPU resumes the interrupted computation.

Interrupts are an important part of computer architecture. Each computer

design has its own interrupt mechanism, but several functions are common. The

interrupt must transfer control to the appropriate interrupt service routine. The

straightforward method for handling this transfer would be to invoke a generic routine

to examine the interrupt information. The routine, in turn, would call the interrupt-

specific handler. However, interrupts must be handled quickly. Since only a

predefined number of interrupts is possible, a table of pointers to interrupt routines

can be used instead to provide the necessary speed. The interrupt routine is called

indirectly through the table, with no intermediate routine needed. Generally, the table

of pointers is stored in low memory (the first hundred or so locations). These

locations hold the addresses of the interrupt service routines for the various devices.

This array, or interrupt vector, of addresses is then indexed by a unique device

number, given with the interrupt request, to provide the address of the interrupt

service routine for the interrupting device. The interrupt architecture must also save

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

11

the address of the interrupted instruction. Many old designs simply stored the

interrupt address in a fixed location or in a location indexed by the device number.

More recent architectures store the return address on the system stack. If the interrupt

routine needs to modify the processor state for instance, by modifying register values

it must explicitly save the current state and then restore that state before returning.

After the interrupt is serviced, the saved return address is loaded into the program

counter, and the interrupted computation resumes as though the interrupt had not

occurred.

2.3. Storage Structure

The CPU can load instructions only from memory, so any programs to run

must be stored there. General-purpose computers run most of their programs from

rewritable memory, called main memory (also called random-access memory, or

RAM). Main memory commonly is implemented in a semiconductor technology

called dynamic random-access memory (DRAM). Computers use other forms of

memory as well. We have already mentioned read-only memory, ROM) and

electrically erasable programmable read-only memory, EEPROM). Because ROM

cannot be changed, only static programs, such as the bootstrap program described

earlier, are stored there. The immutability of ROM is of use in game cartridges.

EEPROM can be changed but cannot-be changed frequently and so contains mostly

static programs. For example, smartphones have EEPROM to store their factory-

installed programs.

All forms of memory provide an array of bytes. Each byte has its own address.

Interaction is achieved through a sequence of load or store instructions to specific

memory addresses. The load instruction moves a byte or word from main memory to

an internal register within the CPU, whereas the store instruction moves the content of

a register to main memory. Aside from explicit loads and stores, the CPU

automatically loads instructions from main memory for execution. A typical

instruction–execution cycle, as executed on a system with a von Neumann

architecture, first fetches an instruction from memory and stores that instruction in

the instruction register. The instruction is then decoded and may cause operands to

be fetched from memory and stored in some internal register. After the instruction on

the operands has been executed, the result may be stored back in memory. Notice that

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

12

the memory unit sees only a stream of memory addresses. It does not know how they

are generated (by the instruction counter, indexing, indirection, literal addresses, or

some other means) or what they are for (instructions or data). Accordingly, we can

ignore how a memory address is generated by a program. We are interested only in

the sequence of memory addresses generated by the running program. Ideally, we

want the programs and data to reside in main memory permanently. This arrangement

usually is not possible for the following two reasons:

1. Main memory is usually too small to store all needed programs and data

permanently.

2. Main memory is a volatile storage device that loses its contents when power is

turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension of

main memory. The main requirement for secondary storage is that it be able to hold

large quantities of data permanently. The most common secondary-storage device is a

magnetic disk, which provides storage for both programs and data. Most programs

(system and application) are stored on a disk until they are loaded into memory. Many

programs then use the disk as both the source and the destination of their processing.

Hence, the proper management of disk storage is of central importance to a computer

system.In a larger sense, however, the storage structure that we have described

consisting of registers, main memory, and magnetic disks is only one of many

possible storage systems. Others include cache memory, CD-ROM, magnetic tapes,

and so on. Each storage system provides the basic functions of storing a datum and

holding that datum until it is retrieved at a later time. The main differences among the

various storage systems lie in speed, cost, size, and volatility. The wide variety of

storage systems can be organized in a hierarchy (Figure 1.4) according to speed and

cost. The higher levels are expensive, but they are fast. As we move down the

hierarchy, the cost per bit generally decreases, whereas the access time generally

increases. This trade-off is reasonable; if a given storage system were both faster and

less expensive than another other properties being the same then there would be no

reason to use the slower, more expensive memory. In fact, many early storage

devices, including paper tape and core memories, are relegated to museums now that

magnetic tape and semiconductor memory have become faster and cheaper. In

addition to differing in speed and cost, the various storage systems are either volatile

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

13

or non-volatile. As mentioned earlier, volatile storage loses its contents when the

power to the device is removed. In the absence of expensive battery and generator

backup systems, data must be written to non-volatile storage for safe keeping. In the

hierarchy shown in Figure 2.2, the storage systems above the solid-state disk are

volatile, whereas those including the solid-state disk and below are non-volatile.

Figure 2-2 Storage-device hierarchy.

2.4. Hardware Protection

To improve system utilization, the O.S began to share system resources among

several programs simultaneously. Multi programming put several programs in

memory at the same time. This sharing created both improved utilization and

increased problems. When the system was run without sharing an error in a program

could cause problems for only the one program that was running. With sharing many

process could be affected by a bug in one program.

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

14

2.4.1. Dual-Mode Operation

To ensure proper operation we must protect the O.S and all programs and their data

from any malfunctioning program. Protection is needed for any shared resource. The

approach taken is to H/W support to allow as differentiating among various modes of

executions. Therefore we need two separate modes of operation: user mode and

monitor mode (also called supervisor mode, system mode, or privileged mode). A bit

called mode bit is added to H/W to indicate the current mode; monitor (0) or user (1).

With the mode bit we are able to distinguish between an execution that is done on

behalf of the O.S, and one that is done on behalf of the user. The dual mode of

operation provides us with the means for protecting the O.S from errant users and

errant users from one another. The H/W allows privileged instructions to be executed

in only monitor mode.

2.4.2. I/O Protection

To prevent a user from performing illegal I/O we define all I/O instructions to be

privileged instructions. Thus user cannot issue I/O instructions directly they must do it

through the O.S. For I/O protection to be complete we must be sure that a user

program can never gain control of the Computer in monitor mode.

2.4.3. Memory Protection

To ensure correct operation we must protect the interrupt vector from

modification by a user program. Also we must protect the interrupt service routines in

the O.S from modification. What we need to separate each program's memory space is

an ability to determine the range of legal addresses that the program may access, and

to protect the memory outside that space. We can provide this protection by using two

registers usually a base and a limit as illustrated in figure 2.3.

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

15

Figure 2-3 A base and a limit register define a logical address space

The base register holds the smallest legal physical memory address; the limit

register contains the size of the range. For example if the base register holds 300040

and limit register is 120900 then the program can legally access all addresses from

300040 through 420940 inclusive.

The CPU H/W comparing every address generated in user mode with registers

accomplishes this protection. Any attempt by a program executing in user mode to

access monitor memory or other user's memory or other users memory results in a

trap to the monitor which treats the attempt as a fatal error (figure 2.4).This scheme

prevents the user program from modifying the code or data structures of either the

O.S or other users.

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

16

Figure 2-4 Hardware address protection with base and limit registers

The base and limit registers can be loaded by only the O.S which uses a special

privileged instruction. Since privileged instructions can be executed in only monitor

mode therefore only O.S can load the base and limit registers. This scheme allows the

monitor to change the value of the registers but prevents user programs from changing

the registers contents.

2.4.4. CPU Protection

The third piece of the protection is ensuring that the O.S maintains control, we

must prevent a user program from an infinite loop, and never returning control to the

O.S. To achieve this goal we can use a timer. A timer can be set to interrupt the

computer after a specified period. The period may be fixed (1/60 second) or variable

(from 1 millisecond to 1 second). To control the timer the O.S sets the counter,

according to fixed-rate clock. Every time that the clock ticks the counter is

decremented. When the counter reaches (0) on interrupt occurs, and control transfers

automatically to the O.S, which may treat the interrupt as a fatal error or may give the

program more time.

2.5. System Calls

System calls provide an interface to the services made available by an

operating system. These calls are generally available as routines written in C and

C++, although certain low-level tasks (for example, tasks where hardware must be

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

17

accessed directly) may have to be written using assembly-language instructions.

Before we discuss how an operating system makes system calls available, let’s first

use an example to illustrate how system calls are used: writing a simple program to

read data from one file and copy them to another file. The first input that the program

will need is the names of the two files: the input file and the output file. These names

can be specified in many ways, depending on the operating-system design. One

approach is for the program to ask the user for the names. In an interactive system,

this approach will require a sequence of system calls, first to write a prompting

message on the screen and then to read from the keyboard the characters that define

the two files. On mouse-based and icon-based systems, a menu of file names is

usually displayed in a window. The user can then use the mouse to select the source

name, and a window can be opened for the destination name to be specified. This

sequence requires many I/O system calls.

Once the two file names have been obtained, the program must open the input

file and create the output file. Each of these operations requires another system call.

Possible error conditions for each operation can require additional system calls. When

the program tries to open the input file, for example, it may find that there is no file of

that name or that the file is protected against access. In these cases, the program

should print a message on the console (another sequence of system calls) and then

terminate abnormally (another system call). If the input file exists, then we must

create a new output file. We may find that there is already an output file with the same

name. This situation may cause the program to abort (a system call), or we may delete

the existing file (another system call) and create a new one (yet another system call).

Another option, in an interactive system, is to ask the user (via a sequence of system

calls to output the prompting message and to read the response from the terminal)

whether to replace the existing file or to abort the program.

When both files are set up, we enter a loop that reads from the input file (a

system call) and writes to the output file (another system call). Each read and write

must return status information regarding various possible error conditions. On input,

the program may find that the end of the file has been reached or that there was a

hardware failure in the read (such as a parity error). The write operation may

encounter various errors; depending on the output device (for example, no more disk

space).

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

18

Finally, after the entire file is copied, the program may close both files

(another system call), write a message to the console or window (more system calls),

and finally terminate normally (the final system call).

Chapter Two Computer-System Operation Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

