Chapter 3:
 Solving System of Linear Equations

S1: Definition of a Matrix, and Types of Matrices

Definitions 3.1.1: A matrix is a rectangular array of numbers enclosed in parentheses. The numbers occurring in a matrix are called the entries.

Each matrix has a certain number of rows and a certain number of columns.

A matrix A with m rows and n column is called $a n m \times n$ matrix. The numbers m and n are called the dimensions of the matrix A and $m \times n$ is called the size of the matrix A.

Examples 3. 1.2: i- $\left(\begin{array}{ll}3 & 1 \\ 7 & 6\end{array}\right)$ is a 2×2 matrix .

$$
\begin{aligned}
& \text { ii- }\left(\begin{array}{lll}
5 & 4 & 9 \\
9 & 2 & 0
\end{array}\right) \text { is a } 2 \times 3 \text { matrix. } \\
& \text { iii- }\left(\begin{array}{lll}
2 & 7 & 9 \\
1 & 0 & 7 \\
8 & 4 & 3
\end{array}\right) \text { is a } 3 \times 3 \text { matrix. }
\end{aligned}
$$

Definition 3.1.3: The entry whose position in the i th row and the \boldsymbol{j} th column of a matrix A is called the $i j$-entry of the matrix A and denoted by $a_{i j}$.

Example 3.1.4: The entries of the matrix $A=\left(\begin{array}{lll}3 & 2 & 4 \\ 1 & 7 & 6\end{array}\right)$ are $a_{11}=3, a_{12}=$ $2, a_{13}=4, a_{21}=1, a_{22}=7, a_{23}=6$.

Definition 3.1.5: An $\mathbf{m} \times \mathrm{m}$ matrix is called a square matrix of order m .

Examples 3.1.6: i- The matrix $A=\left(\begin{array}{ccc}1.2 & 3 & 2.6 \\ 7 & 0.3 & 9 \\ 2.5 & 0 & 4.1\end{array}\right)$ is a square matrix of order 3 .
ii- The matrix $B=\left(\begin{array}{cc}3 & 4 \\ 1.2 & 6\end{array}\right)$ is a square matrix of order 2.
Definitions 3.1.7: A matrix with only one row is called a row matrix. A matrix with only one column is called a column matrix.

Examples 3.1.8: i- The matrix $\mathbf{D}=\left(\begin{array}{llll}7 & 2 & 3 & 9\end{array}\right)$ is a row matrix .

$$
\text { ii- The matrix } E=\left(\begin{array}{l}
4 \\
2 \\
7
\end{array}\right) \text { is a column matrix } .
$$

Definition 3.1.9: A square matrix A whose entries $a_{i \mathrm{i}}=\mathbf{0}$ if $\mathbf{i} \neq \mathbf{j}$ is called a diagonal matrix .

Examples 3.1.10: i- $A=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$ is a diagonal matrix .

$$
\text { ii- } \quad \mathbf{B}=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 3.2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 13
\end{array}\right) \text { is a diagonal matrix . }
$$

Definition 3.1.11: A diagonal matrix whose entries a_{ii} are all equal some fixed number \mathbf{c} is called a scalar matrix .

Examples 3.1.12: i- $A=\left(\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right)$ is a scalar matrix.

$$
\text { ii- } B=\left(\begin{array}{lll}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right) \text { is a scalar matrix. }
$$

Definitions 3.1.13:
A matrix whose entries are all zeros is called a zero matrix and denoted by 0.

A diagonal matrix whose entries on the diagonal are all ones is called an identity matrix and denoted by I.

Examples 3.1.14:

1- $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is a zero matrix.
2- $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ is a zero matrix.

3- $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is an identity matrix.
4- $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is an identity matrix.

S2: Solving System of Linear Equations Using Gauss and Gauss - Jordan Eliminations Methods

Definition 3.2.1: A matrix B is said to be in row - echelon form if B satisfies the following properties :

1. If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1 . (We call this a leading 1).
2. If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix .
3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row.

Examples 3.2.2: The following matrices are in row-echelon form :

1) $\mathrm{A}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$
2) $\mathbf{B}=\left(\begin{array}{llll}1 & 0 & 4 & 3 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 0 & 1\end{array}\right)$
3) $\mathrm{C}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 7 \\ 0 & 0 & 1\end{array}\right)$
4) $\mathrm{D}=\left(\begin{array}{llll}1 & 9 & 5 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$

Definition 3.2.3: A matrix B in row - echelon form is said to be in reduced row - echelon form if B satisfies the following property :

Each column that contains a leading $\mathbf{1}$ has zeros everywhere else .
Examples 3.2.4: The following matrices are in reduced row - echelon form :

1) $\mathbf{A}=\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 9\end{array}\right)$
2) $\mathbf{B}=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$

Definition 3.2.5: The augmented matrix for a system of m linear equations in n unknowns is the $\mathrm{m} \times(\mathrm{n}+1)$ matrix of the coefficients of the unknowns and the constants, and the coefficients of the unknowns are separated from the constants by a vertical line .

Example 3.2.6: The following system of linear equations

$9 x_{1}+4 x_{2}=5$
$7 x_{1}+2 x_{2}=6$
has the following augmented matrix
$\left(\begin{array}{ll|l}9 & 4 & 5 \\ 7 & 2 & 6\end{array}\right)$
Example 3.2.7: The following system of linear equations

$$
\begin{array}{r}
2 x+4 y-3 z=1 \\
x+y+2 z=9 \\
x+2 y-z=2
\end{array}
$$

has the following augmented matrix
$\left(\begin{array}{rrr|r}2 & 4 & -3 & 1 \\ 1 & 1 & 2 & 9 \\ 1 & 2 & -1 & 2\end{array}\right)$

