(1) Gauss Elimination Method :

To reduce the augmented matrix to row - echelon form you should follow the following steps:

Step 1. Locate the leftmost column that does not consist entirely of zeros.
Step 2. Interchange the top row with another row, if necessary , to bring a nonzero entry to the top of the column found in Step 1.

Step 3. If the entry that is now at the top of the column found in Step 1 is \mathbf{b} , multiply the first row by $\frac{1}{b}$ in order to introduce a leading 1.
Step 4. Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix that remains. Continue in this way until the entire matrix is in row - echelon form.

Example 3.2.8: Solve the following system of linear equations by using the Gauss elimination method:
$5 x_{1}+6 x_{2}=7$
$3 x_{1}+4 x_{2}=5$

Solution: The system of linear equations has the following augmented matrix

$$
\begin{aligned}
& \left(\begin{array}{c|c}
\left(\begin{array}{cc}
5 & 6 \\
3 & 4
\end{array}\right. & 5
\end{array}\right) \xrightarrow{\frac{1}{5} \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}}\left(\begin{array}{cc|c}
1 & \frac{6}{5} & \frac{7}{5} \\
3 & 4 & 5
\end{array}\right) \xrightarrow{\mathbf{R}_{2}-3 \mathbf{R}_{1} \rightarrow \mathbf{R}_{2}} \\
& \left(\begin{array}{cc|c}
1 & \frac{6}{5} & \frac{7}{5} \\
0 & \frac{2}{5} & \frac{4}{5}
\end{array}\right) \xrightarrow{\frac{5}{2} \mathbf{R}_{2} \rightarrow \mathbf{R}_{2}}\left(\begin{array}{cc|c}
1 & \frac{6}{5} & \frac{7}{5} \\
0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

The last matrix is in row - echelon form . The corresponding reduced system is:

$$
\begin{align*}
x_{1}+\frac{6}{5} x_{2} & =\frac{7}{5} \tag{1}\\
x_{2} & =2 \tag{2}
\end{align*}
$$

Substitute the value of x_{2} in equation (1), we get
$x_{1}+\frac{12}{5}=\frac{7}{5} \Rightarrow x_{1}=\frac{7}{5}-\frac{12}{5} \Rightarrow x_{1}=-\frac{5}{5}=-1$
Therefore the solution of the system is $x_{1}=\mathbf{- 1}$, and $x_{2}=2$.
Example 3.2.9: Solve the following system of linear equations by using the Gauss elimination method :

$$
\begin{array}{r}
4 y+2 z=1 \\
2 x+3 y+5 z=0 \\
3 x+y+z=11
\end{array}
$$

Solution: The system of linear equations has the following augmented matrix
$\left(\begin{array}{lll|c}0 & 4 & 2 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 1 & 1 & 11\end{array}\right) \xrightarrow{\mathbf{R}_{1} \leftrightarrow \mathbf{R}_{2}}\left(\begin{array}{ccc|c}2 & 3 & 5 & 0 \\ 0 & 4 & 2 & 1 \\ 3 & 1 & 1 & 11\end{array}\right) \xrightarrow{\frac{1}{2} \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}}$
$\left(\begin{array}{ccc|c}1 & \frac{3}{2} & \frac{5}{2} & 0 \\ 0 & 4 & 2 & 1 \\ 3 & 1 & 1 & 11\end{array}\right) \xrightarrow{\mathbf{R}_{3}-3 \mathbf{R}_{1} \rightarrow \mathbf{R}_{3}}$
$\left(\begin{array}{ccc|c}1 & \frac{3}{2} & \frac{5}{2} & 0 \\ 0 & 4 & 2 & 1 \\ 0 & -\frac{7}{2} & -\frac{13}{2} & 11\end{array}\right) \xrightarrow{\stackrel{1}{4} \mathbf{R}_{2} \rightarrow \mathbf{R}_{2}}$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & -\frac{7}{2} & -\frac{13}{2} & 11
\end{array}\right) \xrightarrow{\mathbf{R}_{3}+\frac{7}{2} \mathbf{R}_{2} \rightarrow \mathbf{R}_{3}} \\
& \left(\begin{array}{ccc|c}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & -\frac{19}{4} & \frac{95}{8}
\end{array}\right) \xrightarrow{-\frac{4}{19} \mathbf{R}_{3} \rightarrow \mathbf{R}_{3}} \\
& \left(\begin{array}{lll|l}
1 & \frac{3}{2} & \frac{5}{2} & 0 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1 & -\frac{5}{2}
\end{array}\right) \xrightarrow{\square}
\end{aligned}
$$

The last matrix is in row - echelon form . The corresponding reduced system is:

$$
\begin{align*}
x+\frac{3}{2} y+\frac{5}{2} z & =0 \quad \\
y+\frac{1}{2} z & =\frac{1}{4} \quad \ldots \tag{2}\\
z & =-\frac{5}{2} \quad \ldots \tag{3}
\end{align*}
$$

Substitute the value of z in equation (2), we get

$$
y-\frac{5}{4}=\frac{1}{4} \Rightarrow y=\frac{1}{4}+\frac{5}{4}=\frac{6}{4}=\frac{3}{2}
$$

Substitute the values of y and z in equation (1), we get
$x+\frac{9}{4}-\frac{25}{4}=0 \Rightarrow x=-\frac{9}{4}+\frac{25}{4}=\frac{16}{4}=4$
Therefore the solution of the system is $x=4, y=\frac{3}{2}$, and $z=-\frac{5}{2}$.

Example 3.2.10: Solve the following system of linear equations by using the Gauss elimination method:

$$
\begin{array}{r}
3 x_{1}+6 x_{2}-9 x_{3}=15 \\
2 x_{1}+4 x_{2}-6 x_{3}=10 \\
-2 x_{1}-3 x_{2}+4 x_{3}=-6
\end{array}
$$

Solution: The system of linear equations has the following augmented matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
3 & 6 & -9 & 15 \\
2 & 4 & -6 & 10 \\
-2 & -3 & 4 & -6
\end{array}\right) \xrightarrow{\frac{1}{3} \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}} \\
& \left(\begin{array}{ccc|c}
1 & 2 & -3 & 5 \\
2 & 4 & -6 & 10 \\
-2 & -3 & 4 & -6
\end{array}\right) \xrightarrow{\mathbf{R}_{2}-2 \mathbf{R}_{1} \rightarrow \mathbf{R}_{2}} \\
& \left(\begin{array}{ccc|c}
1 & 2 & -3 & 5 \\
0 & 0 & 0 & 0 \\
-2 & -3 & 4 & -6
\end{array}\right) \xrightarrow{\mathbf{R}_{3}+2 \mathbf{R}_{1} \rightarrow \mathbf{R}_{3}} \\
& \left(\begin{array}{ccc|c}
1 & 2 & -3 & 5 \\
0 & 0 & 0 & 0 \\
0 & 1 & -2 & 4
\end{array}\right) \xrightarrow{\mathbf{R}_{2} \leftrightarrow \mathbf{R}_{3}} \\
& \left(\begin{array}{ccc|c}
1 & 2 & -3 & 5 \\
0 & 1 & -2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The last matrix is in row - echelon form. The corresponding reduced system is:

$$
\begin{align*}
x_{1}+2 x_{2}-3 x_{3} & =5 \tag{1}\\
x_{2}-2 x_{3} & =4 \tag{2}
\end{align*}
$$

Equation (2) implies that $\quad x_{2}=2 x_{3}+4$
Substitute the value of x_{2} in equation (1), we get

$$
x_{1}+4 x_{3}+8-3 x_{3}=5 \quad \Rightarrow \quad x_{1}=-x_{3}-3
$$

If we let $\boldsymbol{x}_{3}=\mathbf{t}$, then for any real number \mathbf{t}, we have:

$$
\begin{aligned}
& x_{1}=-t-3 \\
& x_{2}=2 t+4 \\
& x_{3}=t
\end{aligned}
$$

Therefore the system has infinite number of solutions.

If $\mathbf{t}=0$, the solution will be $x_{1}=-3, x_{2}=4$ and $x_{3}=0$
If $t=1$, the solution will be $x_{1}=-4, x_{2}=6$ and $x_{3}=1$
If $\mathbf{t}=-2$, the solution will be $x_{1}=-1, x_{2}=0$ and $x_{3}=-2$
If $t=3.5$, the solution will be $x_{1}=-6.5, x_{2}=11$ and $x_{3}=3.5$

Exercises 3.2.11:

(1) Solve the following system of linear equations by using the Gauss elimination method:

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=\mathbf{2} \\
2 x_{1}+\mathbf{3} x_{2}-x_{3}=\mathbf{9} \\
x_{1}+\mathbf{3} x_{2}+2 x_{3}=\mathbf{5}
\end{array}
$$

(2) Solve the following system of linear equations by using the Gauss elimination method:

$$
\begin{aligned}
x+y+2 z & =14 \\
x-3 y+2 z & =10 \\
2 x-y+2 z & =15
\end{aligned}
$$

