Chapter one

Functions

الدوال

Definition:

Let A and B be non-empty sets. The relation f from A into B is called function, if each element of A is f- related to one and only one element of B.

i.e

$$\forall x \in A \exists ! y \in B \qquad s. t$$
$$f(x) = y$$

For Examples

هي علاقة تقرن كل عنصر ينتمي الى مجالها بعنصر واحد وواحد فقط في مجالها المقابل تكون الدالة fوتكتب

$$f(x) = y$$

Is a function.

Definition:

A function $f: A \to B$ is called onto (surjective) if and only if

$$\forall b \in B \quad \exists \ a \in A \quad s.t$$
$$f(a) = b$$

الدالة $f:A \to B$ تسمى دالة متعددة اذا كان كل عنصر في B هو صورة لأحد عناصر A

الدالة f ليست onto لان 4 ليس لها صورة

Example:

$$f(x) = 2x + 1$$
 ... (1)

Let $y \in f$

$$y = 2x + 1$$

$$y - 1 = 2x$$

$$\Rightarrow x = \frac{y-1}{2} \qquad \dots (2)$$

Sub in eq (1)

$$f(x) = 2\left(\frac{y-1}{2}\right) + 1$$
$$f(x) = y$$

الدالة متعددة

Definition:

 $f: A \to B$ is called one to one(injective) iff

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

$$\forall x_1, x_2 \in A$$

Example:

$$f(x) = \frac{x-2}{x+1}$$

Let
$$f(x_1) = \frac{x_1 - 2}{x_1 + 1}$$
 , $f(x_2) = \frac{x_2 - 2}{x_2 + 1}$

Now to prove f is one to one

Let
$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1 - 2}{x_1 + 1} = \frac{x_2 - 2}{x_2 + 1}$$

$$(x_1 + 1)(x_2 - 2) = (x_1 - 2)(x_2 + 1)$$

$$x_1 x_2 - 2 - 2x_1 + x_2 = x_1 x_2 + x_1 - 2x_2 - 2$$

$$x_1 - 2x_2 = x_2 + 2x_2$$

$$3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2$$

Definition:

A function $f: A \to B$ is called bijective iff f is both one to one (1-1) and onto.

Example:

$$f: A \to B$$
 s.t $f(x) = x$

To prove *f* is bijective we must prove *f* is one to one and onto

1-
$$\forall x \in B$$
 $\exists x \in A$ s.t $f(x) = x$ f is onto.

2- If
$$x_1 = x_2$$

 $f(x_1) = f(x_2)$

Thus, f is one to one Therefore, by (1) and (2) we get f is bijective.

H.W

Is *f* is one to one or onto or bijective in the following

1-
$$f(x) = x - 5$$

2-
$$f(n) = 2n$$

3-
$$f(x) = 5x - 2$$