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Chapter 1: Fundamental concepts  

  In this chapter we summarize the most important definitions and concepts that are 
relevant to quantum mechanics. Much of the material that follows is quite elementary and 
is probably well known to graduate students. We discuss it mainly to establish a common 
language and notation. 

 

1-1- The Hilbert space, Dirac notation and Wavefunction                                             

In quantum mechanics the physical state of a system is represented by elements 
(vectors), these elements are called state vectors. State vectors are part of linear vector 
space that we call a Hilbert space H. Dirac introduced a powerful formalism referred to 

as Dirac notation or bra-ket notation, in which the state vector   is denoted by the symbol 

 , which he called a ket vector, or simply a ket. Kets belong to the Hilbert space H, or, 

in short, to the ket space. Dirac denoted the elements  of the Hilbert space H by the 

symbol  , which he called a bra vector, or simply a bra. Bra vectors are elements of a 

vector space, called dual space H∗ of the original Hilbert space H. Thus: 

 

•  The scalar product of the vectors 1  and 2  is:      

( )1 2 1 2,   =                                                ...…(1-1-1) 

 
Where, we have to note that eq. (1-1-1) satisfy:   
 

1 2 2 1   

=                                   ...…(1-1-2) 

 

The scalar product in quantum mechanics is generally referred to as an inner product or 
a projection. 

 

•  Two ket states 1 and 2 , are said to be orthonormal if they are orthogonal and if each 

one of them has a unit norm: 

1 2 0  =    ,      1 1 1  =    ,         2 2 1  =                                                     ……(1-1-3)  

•  Any linear combination of a set of vectors ( 1 , 2 , …, N ), is also a vector of the 

same space, i.e. 1 2 Na b q  + + + . 

 

•  The set of vectors, ( 1 , 2 , …, N ), to be denoted in short by i{ } , are called the 

basis of the vector space, and the basis set satisfies the orthonormality condition:  
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i j ij  =                           ...…(1-1-4) 

 

•  The dimension of a vector space is given by the maximum number of linearly 
independent vectors the space can have. For instance, if the maximum number of 

linearly independent vectors a space has is N (i.e., 1 , 2 , …, N ), such space is 

said to be of N-dimensional. 

 

•  The basis set is said to be complete if it spans the entire Hilbert space of the system 

under consideration. This means that any state vector  (or wavefunction) in the 

Hilbert space can be expressed as a linear superposition of the basis vectors, 
 

N

i i

i 1

c 
=

 =                                                        ...…(1-1-5) 

 

Where, the expansion coefficients ci in (1-1-5) are called the components of the vector 

  in the basis. Each component is given by the scalar product of   with the 

corresponding base vector,  
 

i ic =                ...…(1-1-6) 

 

•  In wave mechanics we deal with wave functions )t,r(


 , but in the more general 

formalism of quantum mechanics we deal with abstract kets  . Although, wave 

functions, like kets, are elements of a Hilbert space but kets do not have any spatial 

dependence as wave functions do. Of course, if we want to know the probability of 

finding the particle at some position in space, we need to work out the formalism within 

the coordinate representation. In the coordinate representation, the scalar product 

  is given by 

d)t,r()t,r(


 =                                    ...…(1-1-7) 

 
 A function )r(


 is said to be square integrable if the scalar product of (r, t)  with itself  

 

d)t,r(
2


=


                            ...…(1-1-8) 

 

is finite. In 1927 Born interpreted )t,r()t,r(
2 

=  as the probability density and 

 d)t,r(
2

 as the probability of finding a particle at time t in the volume element d  located 

between r


 and rdr


+ . Thus, the total probability of finding the particle somewhere in 

space must be equal to one: i.e. 
 

1d)t,r(
2

== 
 


                     (Normalization condition)                       ……(1-1-9) 
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Ex. Consider two states 1 1 2 3 42i a 4    = + − + and 2 1 2 3 43 i 5    = − + −

where 1 2 3,  ,  ,   and 4 are orthonormal kets and where “a” is constant. Find the 

value of “a” so that  1 and 2  are orthogonal. 

Soln. 

012 =  

( ) ( )1 2 3 4 1 2 3 43 i 5  2i a 4 6i i 5a 4 0       + + − + − + = + − − =    →   ( ) 5/4i7a −=  

 

1-2- Hermitian operators  

An operator Q̂  is a mathematical rule that when applied to a ket  transforms it into 

another ket   of the same space and when it acts on a bra   transforms it into another 

bra   

 =Q̂ ,                  Q̂  =                     ……(1-2-1)    

When an operator Q̂  is sandwiched between a bra   and a ket  , it yields in general 

a complex number, i.e. Q̂  = complex number. The quantity Q̂  can also be a 

purely real or a purely imaginary number. It does not matter if one first applies Q̂  to the 

ket and then takes the bra-ket or one first applies Q̂  to the bra and then takes the bra-ket; 

that is 

 ( ) ( )ˆ ˆQ Q  =             ……(1-2-2)         

•  The Hermitian adjoint or simply the adjoint, † of a complex number   is the complex 

conjugate of this number: = † . 

•  The Hermitian adjoint, 
†Q̂ , of an operator Q̂  is defined by this relation: 

†ˆ ˆQ Q 


 =                                       ……(1-2-3)  

•  An operator Q̂  is said to be Hermitian, if it is equal to its adjoint †Q̂  :  

†Q̂Q̂ =       or      ˆ ˆQ Q 


 =                                                                 ……(1-2-4)  
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•  If an operator is Hermitian, then an operator can act to the right on a ket or to the left 

on a bra with the same result, i.e., 

 =Q̂     and    =Q̂                                          ……(1-2-5) 

•  An operator Q̂  is said to be skew-Hermitian or anti-Hermitian if, 

Q̂Q̂† −=       or      ˆ ˆQ Q 


 = −                                                             ……(1-2-6) 

•  In quantum mechanics, all operators that correspond to physical observables are 

Hermitian. Hermitian operator has the following properties:  

1- The eigenvalues of Hermitian operator are all real and the eigenvectors corresponding 
to different eigenvalues are orthogonal. (prove). 

2- Hermitian operator in an N-dimensional Hilbert space has N distinct eigenvalues (i.e. 

no degeneracy), then its eigenvectors n  form complete set of vectors (i.e. a complete 

basis set). Any admissible state vector  can be expanded in terms of eigenvectors of 

such Hermitian operator, i.e.,                 

N

n n

n 1

c 
=

=                                                           ……(1-2-7)              

 

H.W. Check whether the following operators are Hermitian or not: the linear momentum 

operator xp̂ , position operator x̂ , 
dx

d
 and 

dx

d
i . 

 

1-3- Eigenvalue problem and Expectation values 

A state vector  is said to be an eigenvector (also called an eigenket) of an operator Â

if the application of Â  on  gives: 

Â a =                           ……(1-3-1) 

where “a” is a complex number, called an eigenvalue of Â . Equation (1-3-1) is known as 

the eigenvalue equation, or eigenvalue problem, of the operator Â . The only possible 

result of a measurement is one of the eigenvalues associated with the corresponding 

eigenstates of an observable. 
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•  If the system is in any other state, say  which is not an eigenstate of the considered 

operator, then the possible outcomes of the measurement cannot be predicted 

precisely, therefore to determine the observable associated with Â , one has to use the 

expectation value (average value) defined as: 



 Â
Â =                                                                     ……(1-3-2) 

•  If the system is in a superposition of eigenstates, e.g., 
n n

n

c = , the expectation 

value is a weighted average of the eigenvalues: 

2

n n n n

n n

Â c a a P= =                                                                                      ……(1-3-3)  

Where we have used nmnnm aÂ  =  

The quantity 
2

nn cP = represents the probability of finding the value “an“ after measuring 

the observable A.  
 

Ex. Imagine a quantum system with an observable A that has three possible 

measurement results: a1, a2, and a3. The three kets 1 , 2  and 3 corresponding to 

these possible results form a complete orthonormal basis. The system is prepared in the 

state 321 i432  +−= . Calculate the probabilities of all possible measurement 

results of the observable A. 

Soln.                        

( ) ( )321321 i432Ci432C  +−−−= 
=1 

29C1
2

=   →  
29

1
C =  

The normalized state is:  ( )321 i432
29

1
 +−=  

The probabilities of measuring the results a1, a2, and a3 are 

( )
29

4
aP

2

11 ==   ,   ( )
29

9
aP

2

22 ==    and  ( )
29

16
aP

2

33 ==   , respectively.  
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1-4- Commuting operators     

The commutator of two operators Â  and B̂ , denoted by  B̂,Â , is defined by:  

  ÂB̂B̂ÂB̂,Â −=                        ……(1-4-1) 

and the anti-commutator }B̂,Â{  is defined by 

ÂB̂B̂Â}B̂,Â{ +=                                                                                    ……(1-4-2)        

Two operators are said to commute if their commutator is equal to zero and hence 

  0ÂB̂B̂ÂB̂,Â =−=     →    ÂB̂B̂Â =                           ……(1-4-3) 

Thus, for commuting operators the order of operation does not matter, whereas it does 

for non-commuting. Two observables A and B are said to be compatible when their 

corresponding operators commute,   0B̂,Â = ; observables corresponding to non-

commuting operators are said to be non-compatible 

 If two observables are compatible, their corresponding operators possess a set of 

common (or simultaneous) eigenstates (this holds for both degenerate and 

nondegenerate eigenstates). So compatible observables can be measured 

simultaneously with arbitrary accuracy; non-compatible observables cannot.  

 

H.W. Show that the operators x̂  and xp̂  don’t commute. 

 
H.W. Prove, if there exists a common (simultaneous) complete set of eigenfunctions for 
two linear operators, then the operators commute.  
 

H.W. Consider the states 21 i7i3  −=  and 1 22i  = − + , where  1 and 

2  are orthonormal. 

(a) Calculate  +  and  + . 

(b) Calculate the scalar products      and   . Are they equal? 

 

1-5- Uncertainty principle 

The spread of the measured result from the average is known as the deviation. The 
uncertainty (variance) is defined as the root-mean-square of the deviation. The 
uncertainty of an observable “A” 
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( ) 222
AAAAA −=−=                   ……(1-5-1) 

The connection between the commutator of two operators Â and B̂ , and the possible 

uncertainty of measurements of the two corresponding observables can be deduced from 

the quantum mechanical generalized uncertainty relation: 

 

1 ˆ ˆA B A,B
2

   
 

              ……(1-5-2) 

Its application to position “x” and momentum “px” observables leads to 
2

px x


 , which 

indicates, that if the x-component of the momentum of a particle is measured with an 

uncertainty xp  , then the uncertainty x  associated with its position “x” measurement 

cannot be smaller than xp2/  . The three-dimensional form of the uncertainty relations 

for position and momentum can be written as follows: 

 

2
px x


  ,            

2
py y


   ,       

2
pz z


           ……(1-5-3) 

Uncertainty is inherent and fundamental, meaning that one cannot design the experiment 

any better to improve the result, and indicates that, although it is possible to measure the 

momentum or position of a particle accurately, it is not possible to measure these two 

observables simultaneously to an arbitrary accuracy. 

Heisenberg’s uncertainty principle can be generalized to any pair of complementary, or 

canonically conjugate, dynamical variables: it is impossible to devise an experiment that 

can measure simultaneously two complementary variables to arbitrary accuracy (if this 

were ever achieved, the theory of quantum mechanics would collapse). 

Energy and time, for instance, form a pair of complementary variables. Their 

simultaneous measurement must obey the time–energy uncertainty relation: 

2
tE




                                    ……(1-5-4) 
This relation states that if we make two measurements of the energy of a system and if 

these measurements are separated by a time interval t , the measured energies will 

differ by an amount E  which can in no way be smaller than t2/  .  

 


