ADVANCED QUANTUM MECHANICS Chapter 2: Matrix Mechanics

Chapter 2: Representation in discrete bases
2-1- Completeness relation and Projection operator

Consider a discrete, complete, and orthonormal basis which is made of countably infinite
setof kets | )| z,), - |z, ) denote it by {z,)}.

The orthonormality condition of the base kets is expressed by

altm)=6m (2-1-1)

where &, is the Kronecker delta symbol defined by

:{1’ n=m (21-2)
0, nzm

0,

nm

The completeness relation or closure for this basis is given by:

Sadwl=t (2-1-3)
Where 1 is the identity (unit) operator, when the unit operator acts on any ket, it leaves
the ket unchanged.

The projection operator A, is defined as:

A=l Xl (2-1-4)
The completeness relation can be written as

SA, =1 (2-1-5)

n

The projection operator has the property:

A =100 0| X ) T | = Ol 20 Y X | = | 0 X 0 | =00 (2-1-6)
hence
A=A, (2-1-7)

The above property is known as idempotency.
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2-2- Matrix representation of kets and bras

The completeness property of the basis enables us to expand any state vector |y)in

terms of the base kets |z, )

V/>=Zn‘,lln><znlt//>=znjcn|xn> (2-2-1)

v)=1

Where the coefficient ¢, =(,|w) is the projection of |y )on the base vector |z,).

So, within the basis {|;(n>} the ket |y) is represented by the set of its components, c1, ¢z,
cs,...along | ), |x2)+ | xs) . ---» respectively. Hence |y/) can be represented by a column
vector which has a countably infinite number of components:

<<Zl||‘//>> C,

|\ C, .
lv)= (2lv) o 7S (2-2-2)
Similarly

(w|=(w[i= ;(wlm% |= 2(% ) (x| = Zn‘,C’;Oznl o (2-2-3)

Thus, the bra (| can be represented by a row vector:

W=y (al) (o) )= o o ) (22:8)

The scalar product of two state vectors |p)and |¢) expanded in terms of complete

basis set {7,)} is

bl
b

(w]g)=2cibn (1] 2n) = Zeibudm =2cibr =(c; ¢ & ) F| e (2-2-5)
nm nm n 3

Where the coefficient b, =(z,|¢) is the projection of |¢) on the base ket | ) .
Hence a ket is normalized if
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W)=Yzl m)=>ae, =2/ =t L (2-2-6)
=3 2
Ex. Consider the following two kets: |y)=| 2+i |, |¢)=| —i
4 2-3i

a) Find the bra (¢|
b) Evaluate the scalar product (g|y).

c) Examine why the products |y)|¢) and (4|(y| do not make sense.
Soln:

a) (g|=(2 i 2+3i)

-3
b) (flw)=(2 i 2+3i)2+i|=7+8i
4

c) First, the product |y)|¢)cannot be performed because, from linear algebra, the product

of two column matrices cannot be performed. Similarly, since two row matrices cannot be
multiplied, the product (¢|(y|is meaningless.

5i 3
H.W. Consider the following two kets: |v)=| 2 |, |#)=| 8i
—1i -9i

a) Find |y) and (/.
b) Is |w) normalized? If not, normalize it.
c) Are |y) and |¢) orthogonal?

2-3- Matrix representation of operators

Consider an operator A operates on a ket |¢) and transforms it into a new ket |y), i.e.

A

w)=A

8 (2-3-1)

Using completeness relation

10
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2|z lv) =A;Ixm><zm|¢>

zcn|ln> = Ame|75m>

Scalar product with (z, |
2ol 2a) = 2 (i |A 2
Cné‘kn = ZAkmbm

Ck = ZAkmbm

Where A, = <;(k ‘A‘;{m>

Equation (2-3-4) can be written as a set of equations

c,=A,b, +ALb, +ALb, +---
C,=A,b +A,b, +A b+
C,=Agb +Ab, +Aygb, +---

Or can be written in matrix form

C, An A, Ay (b
C | Ay Ay Ay b, < c=Ab

C3 A31 A32 A33 tee b3

Chapter 2: Matrix Mechanics

....(2-3-5)

. (2-3-6)

We see that the operator A is represented, within the basis ﬂ;m} by a square matrix

A, which has a countably infinite number of columns and a countably infinite number of

rows:

11
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n(2-37)

> > >
> > >
> > >

In summary, kets are represented by column vectors, bras by row vectors, and operators
by square matrices.

2-4- Matrix representation of some other operators
2-4-1- Hermitian adjoint operator

If an operator A is represented, within the basis ﬂ;m} by a square matrix A,

The matrix which represents the operator A is obtained by taking the complex conjugate
of the matrix transpose of A:

AT=A"  or (A1 )nm ={%, A' o) ={Xn A o) = (Amn )* =A" een(2-4-1)
that is:

An Ay Ay
Al = A Az Ag .....(2-4-2)

* * *
A13 A23 A33

If an operator A is Hermitian, its matrix satisfies this condition:
AT=A o A =A_

Note that a Hermitian matrix must be square and its diagonal elements real numbers.

12
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2-4-2- Matrix representation of |y )(y|

It is easy to see that the product |y )(y|is indeed an operator, since its representation

within {| z, )} is a square matrix:

"

Cl Cl CZI_C; Clcz Clc;
wil=| B B 2| G e (2-4-4)
C,s || C CCi CCp CiCi ...

2-4-3- Trace of an operator

The trace Tr(A) of an operator A is given within an orthonormal basis{|x;)}, by the
expression:

A=A =SA,  L (2-4-5)

The trace of a matrix is equal to the sum of its diagonal elements.
All A12 AlS
A21 A22 A23

Tr T =ALFA A
A31 A32 A33 o 11 22 33

We can ascertain that:

A =@y L (2-4-7)

Ex. Show that the trace of a commutator is always zero, i.e. Tr(AB): Tr(BA).

Soln.

THAB)= 3 (7, 1A8|7,)= 3 (.

n n

A S0 22} = S A

Tr(BA)= Y (4, |BA

m

zm>=§<zm

el za) =SB

Tr(AB)=Tr(I§A)9 Tr(ﬁ)—Tr(éA):O > Tr(ﬁ—éA):O% Tr[A,é]=o

13
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2-5- Matrix representation of some quantities

2-5-1- Matrix representation of (¢|Aly)

AAA

()= 9381~ 0 Tl

= %@Iﬂcn 2

A Sl Jo)

A 2 )2 V) = 203 AmC

Hence, the matrix representation of (4|A|y ) within the basis {z, )}is:

¥
1 11 12 113 - C'l

b A, A, A
b, | |Ax An A,
b A, A, A

w
(@]
N

(#lAlw)=

3 31 32 3 C3

or can be written as:

All A12 A13 Cl
A _ * * * A21 A22 A23 C2
<¢|A|‘//>—(b1 b, b3 A, A

Ex. Consider a matrix A (which represents an operator A), a ket ly) and a bra (g|

5 3+2i 3i —1+i
A=l —-i 3 8| |y)=| 3 |, (g=(6 —i 5)
1-i 1 4 2+3i

a) Calculate the quantities Aly), (|A, (g|Aly)and |y )(g|.

b) Find the complex conjugate, the transpose, and Hermitian conjugate of A, |y) and

(4]
c) Calculate (g|y') and(y |¢).
Soln.
5 3+2i 3i)-1+i -5+17i
a) Ay)=|-i 3 8| 3 |=|17+34i
1-i 1 4\ 2+3i 11+14i

14



ADVANCED QUANTUM MECHANICS Chapter 2: Matrix Mechanics

5 3+2i 3i
(pjA=(6 -i 5) —i 3 8 |=(34-5i 26+12i 20+10i)
1-i 1 4

5 3+2i 3i\-1+i

(p|Aly)=(6 -i 5] -i 3 8| 3 [=59+155i
1-i 1 4)2+3i
-1+i -6+6i 1+i -5+5i
lw)gl=| 3 (6 -i 5)=| 18 -3 15
2+3i 12+18i 3-2i 10+15i
5 3-2i -3i —1-i
b) A'=| i -3 8 lw) =| 3 (g =6 i 5)
1+i 1 4 2-3i
5  —i 1-i 6
A =3+2i 3 1 lw) =(-1-i 3 2-3i), (4| =|-i
3i 8 4 5
5 i 141 6
A'=[3-2i -3 1|, |p)=(l=(-1-i 3 2-3i), (g =|g)=|i
-3 8 4 5
c)
—1+i 6
(flw)=(6 —-i 5 3 |=4+18 , (y|g)=(-1-i 3 2-3i)i|=4-18i
2+3i 5

Ex. Write the expectation value of the operator A in matrix form with respect to ket state
lw), if the state |y) is represented in terms of complete and orthonormal basis setﬂ;@}.

Soln.
The state ket |y) is expanded in terms of the basis set {I;(n>}

lv)= ;mm lv)= Ecnlm

15
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We have two cases:

i) If{|;(n>} are not eigenkets of the operator A

(A)=(w|Aly)=> ¢ (20 |Al 20 )on = X CiAMCn

¥

C, All A12 A13 It
<A> _ C, A21 A22 A23 R
Ay A, A, G

ii) I {7,)} are eigenkets of the operator A, i.e. Aly,)=a|z)
<A> - ZC: <Zn |A|}(m>Cm - ZC:amé‘nmCm = Zc:an ICn

c,)(a, 0 O C,
<A> |G 0 a, O c,
0 0 a C,

A

Ex. Formulate in matrix form the raising operator a* for any complete and orthonormal
eigen ket |n) of the Hamiltonian of the 1-dimensional Harmonic oscillator.

Soln:
a*'ln)=+/n+1n+1)
Taking scalar product with (m|

(mla*|n) =v/n+1(m|n+1)

a;n: r.l_'_lé‘m,nﬂ
0 0 O
o |[¥L 00
1o V2 o0

16
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A —

H.W. Formulate in matrix form the lowering operator a in terms of complete and
orthonormal eigen ket ‘ﬂ> of the Hamiltonian of the 1-dimensional Harmonic oscillator.

~ 1
Ex. Formulate in matrix form the Hamiltonian operator H|n>=ha)(n +§)|n> of the 1-

dimensional harmonic oscillator, where ‘n> is any of the complete orthonormal eigen ket.

2-5-2- Matrix representation of the eigenvalue problem

To find the eigenvalues “a” and the eigenvectors|y) of an operator A satisfy an
eigenvalue problem:

wy=aly) (2-5-4)

A

A

one has to work out the matrix representation of this eigenvalue problem.

Inserting unit operator and multiplying by (7, |, we can cast the eigenvalue equation in

the form

(2w |Ally) = a2, [ilw)

(Zm Aanlanzn w) = aZﬂl(zm Y (2-5-5)
or
ZAmn (xn|w) = az (2 l)om (2-5-6)

Which can be rewritten as

D (A, -as,)c,=0 (2-5-7)

Where A =(x.|Alx,)and c, =(z,|v)

Equation (2-5-7) represents infinite, homogeneous system of equations for the
coefficients c, =(x,|w), since the basis ﬂ;(n>} is made of an infinite number of base kets.

This system of equations has trivial solution if ¢, =0, and nontrivial solution if the
determinant vanishes i.e.

det(A,,-ad,,)=0 (2-5-8)

17
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The problem that arises here is that this determinant corresponds to a matrix with an
infinite number of columns and rows. To solve (2-5-8) we need to truncate the basis { 7, )}

and assume that it contains only N terms, where N must be large enough to guarantee
convergence. In this case we can reduce (2-5-8) to the following Nth degree determinant:

A11 —a AlZ A13 AlN
A21 Azz —a Azs AZN
Ay A, A, —-a Ay =0 (2-5-9)
AN1 AN2 AN3 t ANN —a

Equation (2-5-9) is known as the secular or characteristic equation, which upon solution
yield:

e The N eigenvalues (N roots) a,,a,,a,,...,a, of A The set of these N eigenvalues is called
the spectrum of A,

. 0
a, 0 0

D= 1 (2-5-10)
0 0 0 a,

where D is the diagonal matrix collecting all the eigenvalues along the diagonal.

e The N eigenvectors (N column coefficient) Ci, C2, Cs, ..., Cn Of A,

Cll C12 Cln
C C ... C

c=(C, C, Cy)=| = = ™ (2-5-11)
Cui Cno - C\n

where each column corresponds to a given eigenvalue,

18
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Cll C12 ClN
C C C

Cl = 2 y C2 = 2 5 .y CN = N (2'5'12)
CNl CNZ CNN

e The full eigenvalue problem for a square matrix A is hence given by the single matrix
equation:
AC=DC (2-5-13)

where C is the row matrix of the eigenvectors (a square matrix on the whole), where each
column corresponds to a given eigenvalue (the column index).

e Equation (2-5-13) can be written as N eigenvalue equations (one for each eigenvalue),
AC,=aC,
AC, =a,C,

AC, =a,C,

e |f a number of different eigenvectors (two or more) have the same eigenvalue, such
eigenvalue is said to be degenerate.

¢ In the case where the set ﬂ;m} are eigenvectors of the operator A , then in this basis
the matrix representing the operator A is diagonal,

a, 0 0 0
0 a, 0 0

D=A=|. 7 _ | (2-5-15)
0 0 0 a,

the diagonal elements being the eigenvalues of A , since
Amn = <Zm |A|Zn> = an5mn

Hence, the determination of the eigenvalues of a Hermitian operator is quite equal to
diagonalizing its corresponding matrix.

¢ The trace and determinant of a matrix are given, respectively, by the sum and product
of the eigenvalues:

19
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TrA)=>a, (2-5-16)

det(A)=Ta, (2-5-17)

01
Ex. Find the eigenvalues and the matrix that diagonalize the matrix A= (1 Oj

Soln:

T
To find the eigenvectors:

i) for ai= -1

e (YA > EHE 2 e
1 O C21 C21 Cll C21

_ C.. N cic Cyy Cy -1 > > PN :i

< [_Cllj o (_Cll —Cyy |C11| fu \/E
1(1
1_\/5 1
ii) for a2=1,

o> (EHE) > M) > e
10 C22 C22 C21 C22

1(1 1
The matrix that diagonalize the matrix Ais C=— ie.
J2l-11

1(1 1) (0 11 1) (-1 0
D=C'AC=1 _
2l-1 1) (1 o)l-1 17 o 1

20
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Ex. Find the eigenvalues and the normalized eigen vectors for the operator matrix

0 -i 0

A=/i1 0 0] and find the unitary matrix that diagonalize it.
0 0 O

Soln:

To find the eigenvalues:

-a —-i 0
i -a 0|=0 > -a@®-0)-(-i)(-ia-0)=0 > al@*-1)=0 > a=041
0 0 -a

To find the eigenvectors:

i) Forai=-1
0 -i 0)cy, Cyy iC,, Cy,
AC =aC, > I 0 O|lcy |=—|Cy > ic,, C,y
0 0 0)lcy Cyy 0 Cyy
Cy =iC; 4 C5 =0
iCy ic,, ic,, 1 I
Ci=|Cy| > CICi=|cy || Cu |zl D 2fuf=1 > c =t > ¢ =51
0 0o)lo 2 0
i) For a2=0
0 —i 0)(c, ic,, 0
AC,=a,C, > |i 0 0}cy,|=0 > ic, =0 > ¢,=c,=0 > C,=|0
0 0 O)lc,, 0 Csy
0) (0 0
CiC,=[ 0 || 0 |=1 > |e,f=1 > c,=1 =~ C,=|0
C32 C32 1

21
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0 -1 0 Cis Cis ICy Ci3 —ICy;
i 0 0 Cys |=| Cys > IC;3 Cx 2 Cis ==iCy » C33=0 2 Cs— Cys
0 0 0){cy Cas 0 Css 0
i -
iCyy | [ —iCyy . -
-~ 1 _
C:C, Cs Cpy |=1 2 2|023|2=1 2> (:23=ﬁ > C3_ﬁ 1
0 0
0 -1 0 . i 0 i
The matrix that diagonalize the matrix |i 0 0] is C:E 1 0 1] ie.
0 0 0 0 V2 0
. i 0 —i|(0 - O 0 -i -1 00
D:CTAC:E 1 0 1||i 0 0|1 0 1|=|{0 00
0 v2 0)l0 0 0Jlo v2 o) L0 01

2-6- Change of bases and Unitary Transformations
2-6-1- Transformations of kets and bras

The transformation from one basis to the other is called a change of basis.
Consider two different complete and orthonormal bases {] 7, )}and {m>}. Any admissible

ket state |y) can be expanding in terms of the old basis |z,) as:
|Wold> = ch|zn> ..... (2'6-1)

Where ¢, =(x,|w) is the components of the ket state |y} in terms of the old basis { 4, }-

Cl
c
Eg. (2-6-1) can be written in matrix form - |l//o|d> = C2

3

The same ket state |1//> can be represented in the same space but in terms of the new

basis set

;(;> (in another representation).

22
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Voew) = 21| 22) . (2-6-2)
U
Where ¢/, = (. |i) is the components of the ket state |y/)in terms of the new basis| z,)
C;
Eq.(2-6-2) can be written in matrix form > |Wnew>: 2,2

Transformation from ket state |y,4)to |v,.,) (from ¢ to ¢') can be deduced through

completeness relation:

o= {2lv) =207 ) lv)
c,=>U,co (2-6-3)
Where U, =(x.| )

Equation (2-6-3) can be written in matrix form

Ci Ull UlZ U13 Cl
|| Yn Yo Us fc, . (2-6-4)
CS U31 U32 U33 o C3

Or can be written in compact form

|V/new> = 0 V/old> - c'=Uc (2'6-5)

The inverse transformation of the above equation (transformation from C;l toc )is:

|l//old> = OT l//neW> - C= UTC’ e (2_6_6)

Similarly, transformation from basis set {z,)}to{ z,)} can be deduced with the aid of

completeness relation:

) =2l e (2-6-7)

23
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EAE ZU D) .....(2-6-8)

Equation (2-6-8) can be written as

2)=0"%) (2-6-9)
) to | 7,)) is:
| 2)=0]7.) .....(2-6-10)

One can write

[ Zn) =22V, N (2-6-11)

Each basis set {| 7,)

Z;,>} must satisfy the orthonormalization condition:

<7({x zlz>:5v,u and <Zm|ln>:5mn

Let, first examine the orthonormalization condition <;¢ ;(;> =3,

Starting from eq. (2-6-8) > | z, > Zunﬂ Z0)

=2V (2-6-12)
() =2V (nl =6, L (2-6-13)
<Z\2 > ZU Unlu m Y% e (2'6'14)
(z|lr)=>v,u,=5, (2-6-15)
o, ul =2 (2-6-16)
The above equation can be written in matrix form

w'=l < U0=l < 0O=0" (2-6-17)

A linear operator whose inverse is its adjoint is called unitary. Due to the above property,
the transformation matrix U is called unitary transformation matrix.

24
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H.W. Verify the orthonormalization condition of equation (2-6-11).

2-6-2- Transformations of operators

Let us now examine how operators transform when we change from one basis to another.
Let the matrix element of an operator A in the old basis {x.)}is:

A=Az (2-6-18)
and its matrix element in the new basis is:

AL =z

Alv,y (2-6-19)

The matrix element A}, in the new basis can be expressed in terms of the matrix element
in the old basis as follows:

A= 2 2 M M | 2)

A, = ;(% | 2o A 0 | 2,)

A, =§,<z& I (0] 2)

A,=>U A U (2-6-20)
In matrix form:

A=uAut (2-6-21)
That is

A'=UAU" - A_ =UA O (2-6-22)
A=U'A0 —> A, ,=UA_O (2-6-23)

H.W. Write the inverse transformation of equation (2-6-21): A’ = UAU'
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