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Chapter 2:  Representation in discrete bases 

2-1- Completeness relation and Projection operator 

Consider a discrete, complete, and orthonormal basis which is made of countably infinite 

set of kets 
n21  ...,  , ,   denote it by  n . 

The orthonormality condition of the base kets is expressed by 

nmmn  =                                                                                                        …..(2-1-1)                          

where nm  is the Kronecker delta symbol defined by 







=
=

mn   , 0

mn   , 1
nm                                      …..(2-1-2) 

The completeness relation or closure for this basis is given by: 

În

n

n =                                                                                                        ..…(2-1-3) 

Where Î  is the identity (unit) operator, when the unit operator acts on any ket, it leaves 

the ket unchanged.       

The projection operator 
n is defined as:    

nnn =                                                                                                       …..(2-1-4) 

The completeness relation can be written as  

Î
n

n =                                                                                                              ..…(2-1-5)                                                       

The projection operator has the property: 

nnnmnnmmmnnmn ====                                         …..(2-1-6) 

hence 

n

2

n =                                                                                                               …..(2-1-7)                

The above property is known as idempotency. 
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2-2- Matrix representation of kets and bras  

The completeness property of the basis enables us to expand any state vector  in 

terms of the base kets 
n  

 ===
n

nnn

n

n cÎ                                                                      …..(2-2-1) 

Where the coefficient nnc =  is the projection of  on the base vector 
n . 

So, within the basis  n , the ket  is represented by the set of its components, c1, c2, 

c3, … along 
1 , 

2 , 
3 , …, respectively. Hence  can be represented by a column 

vector which has a countably infinite number of components: 





















=





















=


3

2

1

3

2

1

c

c

c







                                                                                           …..(2-2-2) 

Similarly    

 
====

n

nn

n

nn

n

nn cÎ                                           …..(2-2-3) 

Thus, the bra   can be represented by a row vector: 

( ) ( ) 
== 321321 ccc                                       …..(2-2-4) 

The scalar product of two state vectors  and   expanded in terms of complete 

basis set  n  is  

( )

1

2

n m n m n m nm n n 1 2 3

nm nm n 3

b

b
c b c b c b c c c

b
         

 
 
 = = = =
 
 
 

                   …..(2-2-5) 

Where the coefficient nnb =  is the projection of  on the base ket 
n . 

Hence a ket is normalized if  
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1ccccc
n

2

n

n

nnnn

n

nn ====                                                            …..(2-2-6) 

 

Ex. Consider the following two kets: 
















+

−

=

4

i2

i3

 , 
















−

−=

i32

i

2

 . 

a) Find the bra   

b) Evaluate the scalar product  . 

c) Examine why the products   and   do not make sense. 

Soln: 

a) ( )i32i2 +=  

b) ( ) i87

4

i2

i3

i32i2 +=
















+

−

+=  

c) First, the product  cannot be performed because, from linear algebra, the product 

of two column matrices cannot be performed. Similarly, since two row matrices cannot be 

multiplied, the product  is meaningless. 

 

H.W. Consider the following two kets: 
















−

=

i

2

i5

 , 
















−

=

i9

i8

3

 . 

a) Find 


 and   . 

b) Is  normalized? If not, normalize it. 

c) Are   and  orthogonal?  

 

2-3- Matrix representation of operators  

Consider an operator Â operates on a ket  and transforms it into a new ket  , i.e.  

 Â=                                                                                                             .....(2-3-1)  

Using completeness relation  
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 m

m

mn

n

n Â =                          

 =
m

mm

n

nn bÂc                                                                                           .....(2-3-2)   

Scalar product with 
k   

m

m

mk

n

nkn bÂc  =                                                                               .....(2-3-3)   

=
m

mkmknn bAc 
                                                           

                                         

=
m

mkmk bAc                                                                                                      .....(2-3-4)   

Where 
mkkm ÂA =

  
   

Equation (2-3-4) can be written as a set of equations 



+++=

+++=

+++=

3333321313

3232221212

3132121111

bAbAbAc

bAbAbAc

bAbAbAc

                                                                             …..(2-3-5) 

Or can be written in matrix form 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

c A A A b

c A A A b
                

c A A A b

    
    
    = 
    
    
    

c= bA                                            …..(2-3-6)   

We see that the operator Â  is represented, within the basis  n , by a square matrix 

A, which has a countably infinite number of columns and a countably infinite number of 

rows:  
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11 12 13

21 22 23

31 32 33

A A A

A A A
A

A A A

 
 
 =
 
 
 

                      …..(2-3-7)   

In summary, kets are represented by column vectors, bras by row vectors, and operators 

by square matrices. 

 
 
2-4- Matrix representation of some other operators  

2-4-1- Hermitian adjoint operator 

If an operator Â  is represented, within the basis  n , by a square matrix A,  

11 12 13

21 22 23

31 32 33

A A A

A A A
A

A A A

 
 
 =
 
 
 

                                                

The matrix which represents the operator  †Â  is obtained by taking the complex conjugate 

of the matrix transpose of A: 

= ~† AA      or   ( ) ( )
† †

n m m n mn mn
nm

ˆ ˆ ˆ ˆA A A A A   
 = = = =                   …..(2-4-1)  

that is:  





















=














332313

322212

312111

†

AAA

AAA

AAA

A                       …..(2-4-2)   

If an operator Â  is Hermitian, its matrix satisfies this condition: 

AA† =      or   nmmn AA =
                                   …..(2-4-3)  

Note that a Hermitian matrix must be square and its diagonal elements real numbers. 
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2-4-2- Matrix representation of   

It is easy to see that the product  is indeed an operator, since its representation 

within }{ n is a square matrix: 





















=









































=















332313

322212

312111

†

3

2

1

3

2

1

cccccc

cccccc

cccccc

c

c

c

c

c

c

                                                     ……(2-4-4)  

 
2-4-3- Trace of an operator 

The trace ( )ÂTr  of an operator Â is given within an orthonormal basis }x{ i
, by the 

expression:     

( )  ==
n

nn

n

nn AÂÂTr                                                                               ……(2-4-5) 

The trace of a matrix is equal to the sum of its diagonal elements. 

11 12 13

21 22 23

11 22 33

31 32 33

A A A

A A A
Tr A A A

A A A

 
 
  = + + +
 
 
 

                                        ……(2-4-6) 

We can ascertain that:  

( ) ( )( )= ÂTrÂTr †                                                                          ……(2-4-7) 

 

Ex. Show that the trace of a commutator is always zero, i.e. ( ) ( )ÂB̂TrB̂ÂTr = . 

Soln. 

( )   =







==

nm

mnnm

n

n

m

mmn

n

nn BAB̂ÂB̂ÂB̂ÂTr   

( )   =







==

mn

nmmn

m

m

n

nnm

m

mm ABÂB̂ÂB̂ÂB̂Tr   

( ) ( )ˆ ˆˆ ˆTr AB Tr BA= → ( ) ( )ˆ ˆˆ ˆTr AB Tr BA 0− =  → ( )ˆ ˆˆ ˆTr AB BA 0− = → ˆ ˆTr A,B 0  =
 

 



ADVANCED QUANTUM MECHANICS                               Chapter 2:  Matrix Mechanics  
 

14 
 

2-5- Matrix representation of some quantities  

2-5-1- Matrix representation of  Â  

 















==  m

m

mn

n

n ÂÎÂÎÂ  

m

nm

nmnmmn

nm

n cAbÂ                                 ==                          ……(2-5-1) 

Hence, the matrix representation of  Â within the basis  n is: 

 
†

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

b A A A c

b A A A c
Â

b A A A c
 

    
    
    =
    
    
    

                              ……(2-5-2)   

 
or can be written as: 

( )

11 12 13 1

21 22 23 2

1 2 3

31 32 33 3

A A A c

A A A c
Â b b b

A A A c
    

  
  
  =
  
  
  

                 ……(2-5-3) 

 
 

Ex. Consider a matrix A (which represents an operator Â ), a ket   and a bra   

















−

−

+

=

41i1

8i3i

i3i235

A , 
















+

+−

=

i32

3

i1

 , ( )5i6 −=  

a) Calculate the quantities A , A ,  A and  . 

b) Find the complex conjugate, the transpose, and Hermitian conjugate of A,   and 

 . 

c) Calculate  and  . 

 
Soln. 

a)      
















+

+

+−

=
















+

+−

















−

−

+

=

i1411

i3417

i175

i32

3

i1

41i1

8i3i

i3i235

A  
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( ) ( )i1020i1226i534

41i1

8i3i

i3i235

5i6A ++−=
















−

−

+

−=  

 

( ) i15559

i32

3

i1

41i1

8i3i

i3i235

5i6A +=
















+

+−

















−

−

+

−=  

 

( )
















+−+

−

+−++−

=−
















+

+−

=

i1510i23i1812

15i318

i55i1i66

5i6

i32

3

i1

  

 
 
 

b)   
















+

−

−−

=

41i1

8i3i

i3i235

A ,     
















−

−−

=


i32

3

i1

 ,     ( )5i6=


  

















+

−−

=

48i3

1i3i23

i1i5

A~
,     ( )i323i1

~
−−−= ,      

















−=

5

i

6
~

  

















−

−−

+

=

48i3

1i3i23

i1i5

A†
,     ( )i323i1

†
−−−==  ,      

















==

5

i

6
†

  

 
c) 

( ) i184

i32

3

i1

5i6 +=
















+

+−

−=      ,     ( ) i184

5

i

6

i323i1 −=
















−−−=  

 
 

Ex. Write the expectation value of the operator Â in matrix form with respect to ket state 

 , if the state   is represented in terms of complete and orthonormal basis set n . 

 
Soln.  

The state ket   is expanded in terms of the basis set  n  

n

n

n

n

nn c   ==                                                                         



ADVANCED QUANTUM MECHANICS                               Chapter 2:  Matrix Mechanics  
 

16 
 

We have two cases:     

i) If n  are not eigenkets of the operator Â       

n n m m n nm m

nm nm

ˆ ˆ ˆA A c A c c A c    = = =                                                          

†

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

c A A A c

c A A A c
Â

c A A A c

    
    
    =
    
    
    

 

 

ii) If  n  are eigenkets of the operator Â , i.e.  
nnn aÂ  =                                                                                

n n m m n m nm m n n n

nm nm n

ˆ  ˆA c A c c a c c a Ic    = = =            

                                                                        
†

1 1 1

2 2 2

3 3 3

c a 0 0 c

c 0 a 0 c
Â

c 0 0 a c

    
    
    =
    
    
    

 

 

Ex. Formulate in matrix form the raising operator +â  for any complete and orthonormal 

eigen ket n  of the Hamiltonian of the 1-dimensional Harmonic oscillator. 

Soln: 

1n1nnâ ++=+  

Taking scalar product with m   

1nm1nnâm ++=+  

1n,mmn 1na +

+ +=   





















=+









020

001

000

a  

 



ADVANCED QUANTUM MECHANICS                               Chapter 2:  Matrix Mechanics  
 

17 
 

H.W. Formulate in matrix form the lowering operator −â in terms of complete and 

orthonormal eigen ket n  of the Hamiltonian of the 1-dimensional Harmonic oscillator. 

 

Ex. Formulate in matrix form the Hamiltonian operator n
2

1
nnĤ 








+=   of the 1-

dimensional harmonic oscillator, where n  is any of the complete orthonormal eigen ket. 

 

2-5-2- Matrix representation of the eigenvalue problem 

To find the eigenvalues “a” and the eigenvectors   of an operator Â satisfy an 

eigenvalue problem: 

 aÂ =                                                                         ……(2-5-4) 

one has to work out the matrix representation of this eigenvalue problem. 

Inserting unit operator and multiplying by 
m , we can cast the eigenvalue equation in 

the form 

 ÎaÎÂ mm =  

 n

n

nm

n

nnm aÂ  =                                        ……(2-5-5)                                   

or 

 =
n

mnn

n

nmn aA                                           ……(2-5-6)                                   

Which can be rewritten as 

( )mn mn n

n

A a c 0− =                                                                           ……(2-5-7) 

Where 
nmmn ÂA = and nnc =  

Equation (2-5-7) represents infinite, homogeneous system of equations for the 

coefficients nnc = , since the basis  n  is made of an infinite number of base kets. 

This system of equations has trivial solution if 0cn = , and nontrivial solution if the 

determinant vanishes i.e. 

( )mn mndet A a 0− =             ……(2-5-8) 
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The problem that arises here is that this determinant corresponds to a matrix with an 

infinite number of columns and rows. To solve (2-5-8) we need to truncate the basis  n  

and assume that it contains only N terms, where N must be large enough to guarantee 

convergence. In this case we can reduce (2-5-8) to the following Nth degree determinant: 

 

0

aAAAA

AaAAA

AAaAA

AAAaA

NN3N2N1N

N3333231

N2232221

N1131211

=

−

−

−

−











                                           ……(2-5-9) 

 

Equation (2-5-9) is known as the secular or characteristic equation, which upon solution 
yield: 

•  The N eigenvalues (N roots) N321 a ..., ,a ,a ,a of A. The set of these N eigenvalues is called 

the spectrum of A, 

 

1

2

N

a 0 0 0

0 a 0 0
D

0 0 0 a

 
 
 =
 
 
 

                 ……(2-5-10) 

where D is the diagonal matrix collecting all the eigenvalues along the diagonal. 
 

•  The N eigenvectors (N column coefficient) C1, C2, C3, …, CN  of A, 
 

( )

11 12 1n

21 22 2N

N

N1 N2 NN

c c c

c c c

c c c

 
 
 = =
 
 
 

1 2C C C C                       ……(2-5-11) 

 
where each column corresponds to a given eigenvalue, 
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11

21

N1

c

c

c

 
 
 =
 
 
 

1C ,  

12

22

2

N2

c

c

c

 
 
 =
 
 
 

C , …., 

1N

2N

N

NN

c

c

c

 
 
 =
 
 
 

C                     ……(2-5-12) 

• The full eigenvalue problem for a square matrix A is hence given by the single matrix 
equation: 

D=AC C                               ……(2-5-13) 

where C is the row matrix of the eigenvectors (a square matrix on the whole), where each 

column corresponds to a given eigenvalue (the column index). 

• Equation (2-5-13) can be written as N eigenvalue equations (one for each eigenvalue), 

1

2 2 2

N N N

A a

A a

A a

=

=

=

1 1C C

C C

C C

                                       ……(2-5-14) 

• If a number of different eigenvectors (two or more) have the same eigenvalue, such 

eigenvalue is said to be degenerate. 

 

•  In the case where the set  n  are eigenvectors of the operator Â , then in this basis 

the matrix representing the operator Â is diagonal,  

1

2

N

a 0 0 0

0 a 0 0
D A

0 0 0 a

 
 
 = =
 
 
 

                                                                                  ……(2-5-15) 

the diagonal elements being the eigenvalues of Â , since 
  

mnnnmmn aÂA  ==  

 
Hence, the determination of the eigenvalues of a Hermitian operator is quite equal to 

diagonalizing its corresponding matrix. 

• The trace and determinant of a matrix are given, respectively, by the sum and product 
of the eigenvalues: 
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( ) =
n

naATr                     ……(2-5-16) 

( ) n
n

aAdet =                     ……(2-5-17) 

Ex. Find the eigenvalues and the matrix that diagonalize the matrix  







=

01

10
A   

Soln:  0
a1

1a
=

−

−
     →     1a 2 =       →   1a =  

To find the eigenvectors:    

i) for a1= -1 

1A a=1 1C C     →     11 11

21 21

c c0 1

c c1 0

    
= −    

    

     →       21 11

11 21

c c

c c

   
= −   

   

     →    
11 21c c= −  

11

11

c

c

 
=  

− 
1C      →      

†

11 11†

1

11 11

c c
1

c c

   
= =   

− −   
1C C    →       2

112 c 1=     →     
11

1
c

2
=  

11

12

 
=  

− 
1

C  

ii) for a2=1, 

2 2 2A a=C C   →    12 12

22 22

c c0 1

c c1 0

    
=    

    

      →       22 21

21 22

c c

c c

   
=   

   

       →       
12 22c c=  

12

2

12

c

c

 
=  
 

C       →      

†

12 12†

2 2

12 12

c c
1

c c

   
= =   
   

C C      →      2

122 c 1=    →    
12 22

1
c c

2
= =   

2

11

12

 
=  

 
C  

The matrix that diagonalize the matrix A is 
1 11

1 12

 
=  

− 
C    i.e. 

†

†
1 1 0 1 1 1 1 01

D A
1 1 1 0 1 1 0 12

−      
= = =      

− −      
C C  
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Ex. Find the eigenvalues and the normalized eigen vectors for the operator matrix 















 −

=

000

00i

0i0

A  and find the unitary matrix that diagonalize it. 

Soln:    

To find the eigenvalues:  

0

a00

0ai

0ia

=

−

−

−−

    →   ( ) 0)0ia)(i(0aa- 2 =−−−−−   →  ( ) 01aa 2 =−     →      1,0a =  

To find the eigenvectors:  

i) For a1= -1 

1A a=1 1C C       →       

11 11

21 21

31 31

0 i 0 c c

i 0 0 c c

0 0 0 c c

−    
    

= −    
    
    

     →       

21 11

11 21

31

ic c

ic c

0 c

−   
   

= −   
   
   

         

11 21c ic=  ,  
31c 0=   

21

21

ic

c

0

 
 

=  
 
 

1C   →    

†

21 21

†

1 21 21

ic ic

c c 1

0 0

   
   

= =   
   
   

1C C    →   2

212 c 1=     →  
21

1
c

2
=  →   

i
1

1
2

0

 
 

=  
 
 

1C  

ii) For a2=0 

2 2 2A a=C C   →    

12

22

32

0 i 0 c

i 0 0 c 0

0 0 0 c

−  
  

=  
  
  

   →    

22

12

ic

ic 0

0

− 
 

= 
 
 

   →    
12 22c c 0= =     →    2

32

0

0

c

 
 

=  
 
 

C       

†

†

2 2

32 32

0 0

0 0 1

c c

   
   

= =   
   
   

C C        →      2

32c 1=        →      
32c 1=        →           2

0

0

1

 
 

=  
 
 

C  

iii) For a3= 1,      3 3 3A a=C C  
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13 13

23 23

33 33

0 i 0 c c

i 0 0 c c

0 0 0 c c

−    
    

=    
    
    

    →   

23 13

13 23

33

ic c

ic c

0 c

−   
   

=   
   
   

    →   
13 23c ic= −  , 

33c 0=     →    

23

3 23

ic

c

0

− 
 

=  
 
 

C      

†

23 23

†

3 3 23 23

ic ic

c c 1

0 0

− −   
   

= =   
   
   

C C       →      2

232 c 1=      →       
23

1
c

2
=      →      3

i
1

1
2

0

− 
 

=  
 
 

C  

The matrix that diagonalize the matrix 














 −

000

00i

0i0

 is  

i 0 i
1

1 0 1
2

0 2 0

 −
 

=  
 
 

C    i.e. 

†

†

i 0 i 0 i 0 i 0 i 1 0 0
1

D A 1 0 1 i 0 0 1 0 1 0 0 0
2

0 0 0 0 0 10 2 0 0 2 0

   − − − −   
      

= = =      
      
      

C C  

 

2-6- Change of bases and Unitary Transformations  

2-6-1- Transformations of kets and bras 

The transformation from one basis to the other is called a change of basis.  

Consider two different complete and orthonormal bases }{ n and }{  . Any admissible 

ket state  can be expanding in terms of the old basis n as: 

 

n

n

nold c  =                                                                                                   ..…(2-6-1) 

Where nn xc =  is the components of the ket state  in terms of the old basis }{ n . 

Eq. (2-6-1) can be written in matrix form    →             





















=


3

2

1

old
c

c

c

                                                                                                                                                                            

The same ket state   can be represented in the same space but in terms of the new 

basis set  (in another representation).  
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  =cnew                                                                                                  ..…(2-6-2)    

Where 
=c  is the components of the ket state  in terms of the new basis   

Eq.(2-6-2) can be written in matrix form    →              



























=


3

2

1

new
c

c

c

                                                                        

Transformation from ket state old to new  (from 
nc to c ) can be deduced through 

completeness relation: 

  n

n

nc  ==    

n n

n

c U c 
 =                                                                                                       ..…(2-6-3) 

Where 
n nU  =   

Equation (2-6-3) can be written in matrix form 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

c U U U c

c U U U c

c U U U c

    
    
    =
    
    
    

                                                                         ..…(2-6-4) 

Or can be written in compact form  

oldnew Û =         →      U =c c                                       ..…(2-6-5) 

The inverse transformation of the above equation (transformation from c  to 
nc ) is:  

new

†

old Û  =       →      
†U =c c                                                                   ..…(2-6-6)  

Similarly, transformation from basis set }{ n to }{   
can be deduced with the aid of 

completeness relation: 

  =  n

n

n
                                                                                         ..…(2-6-7)
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†

n n

n

U   =                                                                                                 …..(2-6-8)  

Equation (2-6-8) can be written as 

†

nÛ  =                                                                                     …..(2-6-9)  

The inverse transformation of the above equation (transformation from 
  to n ) is:                    

n Û  =                                                                                                      …..(2-6-10)  

One can write  

n nU 


 =                                                                                   …..(2-6-11)  

Each basis set }{ n and }{   must satisfy the orthonormalization condition:  

  =   and  
mnnm  =   

Let, first examine the orthonormalization condition 
  =   

Starting from eq. (2-6-8)  →  †

n n

n

U   =     

m m

m

U   =                                                                                               ……(2-6-12)      

†

m n m n

mn

U U          = =                                                                     ……(2-6-13)                                   

†

m n mn

mn

U U         = =                                                  ……(2-6-14) 

†

n n

n

U U        = =                                                                              ……(2-6-15)     

†

n n

n

U U 1  =                                                                                                    ……(2-6-16)                                  

The above equation can be written in matrix form                  

† † † -1ˆ ˆ ˆ ˆ ˆ ˆUU I    U U I        U U=  =  =                                                            ……(2-6-17)          

A linear operator whose inverse is its adjoint is called unitary. Due to the above property, 
the transformation matrix U is called unitary transformation matrix.         
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H.W. Verify the orthonormalization condition of equation (2-6-11).  

 

2-6-2- Transformations of operators 

Let us now examine how operators transform when we change from one basis to another. 

Let the matrix element of an operator Â  in the old basis }{ n is: 

nmmn ÂA =           ……(2-6-18)  

and its matrix element in the new basis is: 

  = ÂA           ……(2-6-19)  

The matrix element A  in the new basis can be expressed in terms of the matrix element 

in the old basis as follows: 

 

  =  nnm

mn

m ÂA  

  =  nmn

mn

m AA                                                                               

*

m mn n

mn

A A       =                                                                                                                                                                              

†

m mn n

mn

A U A U  
 =                                                                                            .....(2-6-20)     

In matrix form: 

 
†A UAU =              .....(2-6-21)     

That is  

†ˆ ˆˆ ˆA UAU =       →    †

new old
ˆ ˆˆ ˆA UA U=             .....(2-6-22)     

†ˆ ˆˆ ˆA U A U=   →    †

old new
ˆ ˆˆ ˆA U A U=                             .....(2-6-23)     

H.W. Write the inverse transformation of equation (2-6-21):  
†A UAU =  


