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Chapter 6:   Approximation Methods for Stationary States 

6.1. Introduction 

The exact solution of Schrödinger equation can be found for only a limited number of 

problems, such as square wells, harmonic oscillator, hydrogen atom etc. A majority of 

problems in quantum mechanics can usually be solved using a wide variety of 

approximate methods. In this chapter, we will consider approximation methods that deal 

with stationary states corresponding to the time-independent Hamiltonians: time 

independent perturbation theory (non-degenerate and degenerate) and variational 

methods. 

 
6.2. Time independent perturbation theory 

6.2.1. Non-degenerate system 

Perturbation theory is developed to deal with small corrections to problems which we have 

solved exactly, like the harmonic oscillator and the hydrogen atom.  We will make a series 

expansion of the energies and eigenstates for cases where there is only a small correction 

to the exactly soluble problem. 

Suppose that the Hamiltonian for our system can be written as 

1o ĤĤĤ +=                                                                                                           ..…(6-2-1)                                                 

Where oĤ  is the dominant unperturbed Hamiltonian part (the part that we can solve 

exactly i.e., we know exactly its eigenvectors and eigenvalues), and 1Ĥ  is the perturbed 

Hamiltonian part (the part that we cannot solve, provided o1 HH  ).  

It is then assumed that the solutions to the unperturbed eigenvalue problem: 

)0()0(

k

)0(

o kEkĤ =                                   ..…(6-2-2)                                                                                                                  

are known, in which we have labeled the unperturbed energy by 
)0(

kE  and the 

corresponding unperturbed eigenket by 
)0(

k . By non-degenerate we mean that there is 

only one eigenket 
)0(

k associated with each eigenvalue 
)0(

kE .The eigenkets 
)0(

k  form a 

complete orthonormal set: 
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kk

)0()0(

kk =      

Since 
1Ĥ  is small, the eigenstate k for the total problem do not differ greatly from the 

eigenstate 
)0(

k  for the unperturbed problem, so 

(0)

k k 1=  

The corresponding Schrödinger equation of the full Hamiltonian given in eq. (6-2-1) is:  

kEkĤ k=                           ..…(6-2-3) 

cannot be solved to obtain the energy eigenvalue 
kE and the eigenkets k exactly. 

However, it could be possible to reduce the full Hamiltonian Ĥ into independent parts, 
the full Hamiltonian can be written as   

1o ĤĤĤ +=                                                                                                        ..…(6-2-4) 

Where  is an arbitrary parameter (0→1) which can be later taken equal to unity to obtain 

desired solution.   

 It is possible to expand the eigenkets and the corresponding eigenvalues of the full 

Hamiltonian in power series of . 
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                                                                               ..…(6-2-5)   

Substitute equations (6-2-5) and (6-2-4) into equation (6-2-3)  
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                               …..(6-2-7) 
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Because of linear dependence of terms in a power series, this can only be satisfied for 

arbitrary  if all terms with the same power of  cancel independently. 

Equate coefficient of like power of  

0        →     
)0()0(

k

)0(

o kEkĤ =                                                                                   ..…(6-2-8) 

The zeroth order energy (eigenvalue of the unperturbed Hamiltonian) is 

)0(

o

)0()0(

k kĤkE =                                                                                                     ..…(6-2-9) 

 

1      →      
)1()0(

k

)0()1(

k

)1(

o

)0(

1 kEkEkĤkĤ +=+                                                          .….(6-2-10)   

2     →      
)0()2(

k

)2()0(

k

)1()1(

k

)2(

o

)1(

1 kEkEkEkĤkĤ ++=+                                              ..…(6-2-11)  

At this point, the parameter   has done its work and is not needed any more. 

 

First order correction to energy eigenvalue   

Reorder equation (6-2-10) in the following form:                                                            

)0()1(

k1

)1()0(

ko kEĤkEĤ 







−−=








−                                                                            ..…(6-2-12) 

Scalar product with 
)0(

k  

)0()1(

k1

)0()1()0(

ko

)0(

kEĤkkEĤk 







−−=








−                                                                 ..…(6-2-13) 

)0()0()1(

k

)0(

1

)0()1()0(

k

)0(

k

)0(

kkEkĤkkEEk +−=







−                                                           ..…(6-2-14)   

0kkEkĤk
)0()0()1(

k

)0(

1

)0(

=+−                                                                ..…(6-2-15) 
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The first order correction to the energy eigenvalue is 

 
)0(

1

)0()1(

k kĤkE =                                                                                                  ..…(6-2-16) 

 

First order correction to the energy eigenket   

Expand 
)1(

k in terms of the unperturbed function
)0(

n , where k n  

(1) (0)

n

n

k c n=                                                                                                     ..…(6-2-17)          

Insert equation (6-2-17) into equation (6-2-12) 

)0()1(

k1

n

)0(

n

)0(

ko kEĤncEĤ 







−−=








−                                                                       ..…(6-2-18) 

Scalar product with 
(0)

n  

(0) (0) (0) (0) (1) (0)

n o k 1 k

n

ˆ ˆc n H E n n H E k
   

− = − −   
   

                                                       ..…(6-2-19) 

(0) (0) (0) (0) (1)

n k n nn 1 k nk
ˆE E c n H k E 

 
− = − + 

 
 

)0(

1

)0(

n

)0(

k

)0(

n kĤncEE −=







−  









−

=
)0(

n

)0(

k

)0(

1

)0(

n

EE

kĤn

c                                                                                                   ..…(6-2-20) 












−

=
kn

)0(

)0(

n

)0(

k

)0(

1

)0(

)1(

n

EE

kĤn

k                                                                                       ..…(6-2-21)   
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Second order correction to the energy eigenvalue   

Rewrite equation (6-2-11) in the following form:                                                          

)0()2(

k

)1()1(

k1

)2()0(

ko kEkEĤkEĤ +







−−=








−                                                               ..…(6-2-22)           

Scalar product with 
)0(

k  

)0()0()2(

k

)1()1(

k1

)0()2()0(

ko

)0(

kkEkEĤkkEĤk +







−−=








−                                               ..…(6-2-23) 

)0()0()2(

k

)1()0()1(

k

)1(

1

)0()2()0()0(

k

)0(

k kkEkkEkĤkkkEE ++−=







−                                           .…(6-2-24) 

)1(

1

)0()2(

k kĤkE =                                                                                                   ..…(6-2-25)    

Where 0kk      ,   0kk
)1()0()2()0(

==  

Substitute equation (6-2-21) into equation (6-2-25) 












−

=
kn

)0(

n

)0(

k

2
)0(

1

)0(

)2(

k

EE

kĤn

E                                                                                            ..…(6-2-26) 

 

EX. A diatomic molecule has permanent dipole moment P


 along the direction connecting 

the two atoms. If such a molecule is placed in a uniform electric field 


. Treat the molecule 

as a rigid rotator with unperturbed Hamiltonian I2/LH 2

o = , where I  is the moment of 

inertia of the molecule. If the perturbed Hamiltonian is 

−= PĤ1  which represent the 

interaction energy between the dipole moment and the electric field. Find: 

a) The first order energy shift of the ground state. 

b) The first order correction to the ground state wavefunction. 

c) The second order energy correction of the ground state. 
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Soln. 

a)  
)0()0(

k

)0(

o kEkĤ =    →    
( ) )0(2)0(2

k
I2

1
k

I2

L  +
=  

The eigenfunction of L2 is ),(Ym  , so that the eigenfunction of oH is also m),(Ym  =  

The eigenfunction of the ground state =



4

1
00),(Y0

0 ==  

)0(

1

)0()1(

k kĤkE =  →  0dsincosd
4

P
00Ĥ00E

2

0 0

1

)1(

o =
−

==  
 





  (There is no first order 

correction to the ground state energy).  

Where  cosPPĤ1 −=−=


 

b)   Using equation (6-2-21)   →  










−

=
kn

)0(

)0(

n

)0(

k

)0(

1

)0(

)1(

n

EE

kĤn

k   

( )
I2

1
E          ),(Ymn

0E                 
4

1
00k

2)0(

n

m
)0(

)0(

o

)0(


 

+
===

===




 


−

== 


dcosY
4

P
00ĤmkĤn m

1

)0(

1

)0(





  

Using  


 cos
4

3
10),(Y0

1 ==         


−

== 


dYY
3

P
00ĤmkĤn 0

1

m

1

)0(

1

)0(




 

Using the orthonormality condition  mm

mm dYY 
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c) Using equation (6-2-26)   →  










−
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2)2(
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EX. Consider one dimensional anharmonic oscillator with full Hamiltonian

42
2

axkx
2

1

m2

p
Ĥ ++= , where 4ax is small, if the unperturbed wavefunction of the ground 

state is ( )
21/4

kx

2
o

k
x e 

 

 −
  
 

 
=  
 

.  

a) Find the first order energy shift for the ground state. 

b) (H.W) Find the zeroth order energy eigenvalue, and the total energy of the ground state 

up to first order correction. 

c) (H.W) Find the first order energy correction for the first excited state if the unperturbed 

wavefunction of the first excited state is given by: ( )
21/4 1/2

kx

2
1

k 2k
x x e 

  

 −
  
 

   
=      
   

. 

Soln.   

( )
21/4

(0) (0) (0) kx
 

2
o

2
2

o

4

1

k
k 0 x

p 1
Ĥ kx       

2m 2

Ĥ ax

e 
 

 −
  
 

 
= = =  

 

= +

=

 

a) Using equation (6-2-16) → 
)0(

1

)0()1(

k kĤkE =   →  dxx
ka

0Ĥ0E 4
kx

2/1
2)0(

1

)0()1(

o e
2









== 



−













 −
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2/5

4
kx

k4

3
dxxe

2









=



−













 − 


 

2)1(

o
k

a
4

3
E 








=


 

H.W. Calculate the first order correction to the energy of the nth state of a harmonic 

oscillator whose center of potential has been displaced from 0 to a distance L.  

 
EX. An electron of charge (-e) moves in a one-dimensional harmonic oscillator potential, 

the unperturbed Hamiltonian is 22
2

x
o xm

2

1

m2

p
Ĥ += . A weak, uniform electric field 


 is 

applied in the positive x-direction. Thus, the potential energy due to the electric field is 

xe (a) Write down the perturbation Hamiltonian 1Ĥ  in terms of +â , −â  and other 

quantities. (b) Find the first-order correction to the ground state energy. (c) Find the 
second-order correction to the ground state energy. 
 

Soln.   

a)    ( )ˆ ˆx̂ a a
2m

+ −= +    →   ( )−+ +== ââ
m2

exeĤ1





 

b)
 

)0(

1

)0()1(

k kĤkE =      →       ( ) 00ââ0
m2

eE
)0()0()1(

o =+= −+





       (Why) 

c)   










−

=
kn

)0(

n

)0(

k

2
)0(

1

)0(

)2(

k

EE

kĤn

E

      

  →         ( )
( )
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−

+

=
0n

)0(

n

)0(

o

2
)0()0(

2
)2(

o

EE

0âân

m2
eE





                                                                          

)
2

1
n(E

)0(

k +=         →      
2

1
E

)0(

o =  

 

( ) 1n

)0()0()0()0(

0ân0âân ==+ +−+
 

 
The only allowed transition is where n=1 and so we find 
 

( )
( )
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2
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)2(

o
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6.2.2. Degenerate system 

Consider a degenerate system such that the zeroth order Hamiltonian has   states with 

energy 
(0)

kE . These zeroth order states satisfy  

( )
(0) (0) (0)

0
k,Ĥ k , E k , =            1,  2,  3,  ...,   =                                                ..…(6-2-27)            

where now we use two indices to represent each state: the first index k runs over the 

different energy eigenvalues while the second index   runs over the   degenerate states 

for a particular energy eigenvalue. Since we have   degenerate states of energy 
(0)

kE , any 

linear combination of these states is also a valid state of energy 
(0)

kE . 

Let expand 
)0(

k in terms of the degenerate unperturbed function ,k
)0(

 

(0) (0)

1

k c k ,






=

=                                                                                               ..…(6-2-28)          

Insert the above equation into equation (6-2-12)  

( ) ( )
(0) (1) (1) (0)

0 1

k k

1

ˆ ˆH E k c H E k ,






=

   
− = − −   

   
                                                             ..…(6-2-29) 

Scalar product with ,k
)0(

 

( ) ( )
(0) (0) (1) (0) (1) (0)

0 1

k k

1

ˆ ˆk , H E k c k , H E k ,





  
=

   
− = − −   

   
                                         ..…(6-2-30) 

( ) ( )
(0) (1) (0) (0) (1) (1)

0 1

k k

1

ˆk , H k E k , k c H E


  


  
=

 
− = − − 

 
  

Where 
( ) ( )

(0) (0)
1 1ˆH k , H k ,  =   and  

( )
(0) (1) (0) (0) (1)

0

k
ˆk , H k E k , k 0 − =   

( )
(1)

1

k

1

c H E 0


  



=

 
− = 

 
                                                                                       .…(6-2-31) 
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In matrix form  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(1)
1 1 1

11 k 12 13
1

(1)
1 1 1

2
21 22 k 23

(1) 31 1 1

31 32 33 k

H E H H c

cH H E H 0
c

H H H E

 
−  

  
−    =

  
  −
  

 

                                                     ..…(6-2-32) 

Trivial solution, if 0c = , (reject this solution because it has no physical meaning). 

Nontrivial solution if and only if  
( )

(1)
1

kdet H E 0 
 

− = 
 

 , i.e. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(1)
1 1 1

11 k 12 13

(1)
1 1 1

21 22 k 23

(1)
1 1 1

31 32 33 k

H E H H

H H E H 0

H H H E

−

− =

−

                                                              ..…(6-2-33)  

 

6.2.3. The Stark effect  

The effect that an external electric field has on the energy levels of an atom is called the 

Stark effect. 

 

EX. Consider the Stark effect in Hydrogen atom, where an external uniform weak electric 

field   directed along the positive z-axis. Find the first order energy correction for the 

ground and first excited state. 

Soln. 

In the absence of an electric field, the unperturbed Hamiltonian of the hydrogen atom is: 
 

( )
2 2

0

o

p̂ 1 e
Ĥ

2m 4 r
= −  

When the electric field is turned on, the interaction between the atom and the electric field 

generates a term er   that needs to be added to ( )0
Ĥ . i.e., the perturbed Hamiltonian is:  
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( )1
Ĥ er er cos e  z=  = =  

 

The eigen state of ( )0
Ĥ is  mn    

 

where n is the principal quantum number,   is the orbital quantum number and m  is the 

magnetic quantum number.  
 
1-For the ground state, n=1,  

0=  and 0m =  → 100 , this corresponds to “1s” configuration. This state is non-

degenerate, so we use non-degenerate perturbation theory. 

The first order correction to the ground state energy eigenvalue 
)1(

oE is: 

( )
(1) (0) (0)

1

k
ˆE k H k=    →   

(1) (0) (0)

0
ˆE e 100 z 100=     →  ( )

(1) 2
0

0 100E e z d =         
 

Because the function z has odd parity and the square of the wave function ( )
2

0

100  has 

even parity. The resultant integrand has odd parity and so yields zero when integrated 

over all space.  

(1)

0E 0=   

There is no first-order (i.e., linear) Stark effect occurs in the ground state of hydrogen. 

The absence of a linear Stark effect in the ground state implies that the atom does not 

have a permanent electric dipole moment in its ground state. 

 

2-For first excited state, n=2.   

The n=2 state of the hydrogen atom is 4-fold degenerate, with one 2s state and three 2p 

states, i.e.  200 , 210 ,
 

121−
 
and 211 . 

Let us denote the unperturbed first excited state as 
)0(

1  , then 

(0) (0)

1

k c k ,






=

=      →    
( ) ( ) ( ) ( )0 0 0 0(0)

1 2 3 41 200 c 210 c 21 1 c 211 c= + + − +  
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We construct the matrix of the perturbation ( )1
H in the n=2 degenerate subspace, 

( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

0 0 0 0 0 0 0 0
1 1 1 1

0 0 0 0 0 0 0 0
1 1 1 1

1

0 0 0 0 0 0 0 0
1 1 1 1

0 0 0 0 0 0 0 0
1 1 1 1

ˆ ˆ ˆ ˆ200 H 200 200 H 210 200 H 21 1 200 H 211

ˆ ˆ ˆ ˆ210 H 200 210 H 210 210 H 21 1 210 H 211

H

ˆ ˆ ˆ ˆ21 1 H 200 21 1 H 210 21 1 H 21 1 21 1 H 211

ˆ ˆ ˆ ˆ211 H 200 211 H 210 211 H 21 1 211 H 211


−



 −


= 


− − − − −




−
















                  …..(1)                                                                                             

 
Reduction of the size of the matrix: 

1- Since ( )1

z
ˆ ˆL ,H 0  =

 
  →  

z
ˆe L ,z 0  =

 
 

z z z
ˆ ˆ ˆe n m L ,z n m e n m L z zL n m 0      = − =

     

( )z z
ˆ ˆe n m L z n m n m zL n m 0   − =

 

( )e m m n m z n m 0  − =
 

0mnzmn =     if mm   

According to the above condition, the following matrix elements in the determinant of eq. 

(1) will vanish 

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )0 0 0 0 0 0 0 0 0 0
1 1 1 1 1ˆ ˆ ˆ ˆ ˆ200 H 21 1 200 H 211 210 H 21 1 210 H 211 21 1 H 211 0− = = − = = − =  

Eq. (1) becomes: 
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( )

( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

( )

( )
( )

( )

( )
( )

( )

0 0 0 0
1 1

0 0 0 0
1 1

1

0 0
1

0 0
1

ˆ ˆ200 H 200 200 H 210 0 0

ˆ ˆ210 H 200 210 H 210 0 0

H

ˆ0 0 21 1 H 21 1 0

ˆ0 0 0 211 H 211

 
 
 
 
 
 

=  
 

− −
 
 
 
 
 

                         .....(2) 

 

2- Using parity condition:  

The parity ̂  of the hydrogen atom wave functions is determined as 

( ) )r(1)r(ˆ
mn

 
 −=   

The Hamiltonian for the perturbation has odd parity, so the matrix elements between 
states of the same parity give an integrand that is odd and hence a zero integral. The only 
nonzero matrix elements are those between states of different parity, which are the s and 
p states.  

i.e., the only nonzero matrix element  ( )1ˆn m H n m 0   , only if odd=+  . Eq. (2) 

becomes: 

( )

( )
( )

( )

( )
( )

( )

0 0
1

0 0
1 1

ˆ0 200 H 210 0 0

ˆH 210 H 200 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 =
 
 
 
 
 

                                                                  .....(3) 

Thus, the only nonvanishing matrix elements of the perturbation are those connecting the 

2s 2s 200  and 02p 210 states; the 12p 21 1   states are not affected by the 

perturbation and their energies are unchanged and the linear homogeneous equations 

reduce to a set of two equations.  

( )

( )
( )

( )

( )
( )

( )

0 0
1

1

0 0
1

ˆ0 200 H 210

H

ˆ210 H 200 0

 
 
 

=
 
 
 
 

                                                                    .....(4) 
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Now we need to calculate the matrix element 
( )

( )
( )0 0

1ˆ200 H 210         

( ) ( )0 0
0

200 20 0200 (r, , ) R (r)Y ( , )    = =    

 ( ) ( )
e oa2

r

o

2/3

os220
a

r
2a

22

1
)r(R)r(R 









 −
−











−==    ,             0

0

1
Y ( , ) 00

4
 


= =  

( )

( )
( )

o

0 r
3/20 0

2a
20 0 2s 0 o

o

1 r
200 R (r) Y ( , ) R (r) Y ( , ) a 2

a4 2
e   



 −
−  

 

 
=  =  = −  

 
 

( ) ( )0 0
0

210 21 1210 (r, , ) R (r)Y ( , )    = =  

( ) ( )
e oa2

r
2/5

op221 ra
62

1
)r(R)r(R 









 −
−

==      ,              


cos
4

3
Y0

1 =             

( )

( )
( )

o

0 r
5/2

2a
210 o

cos
(r, , ) a r

4 2
e


  



 −
−  

 ==    

( )
( )

( ) ( ) ( ) 20 0 0 0
1 0 0 2

0 1 2s 2p o

0 0 0

ˆ200 H 210 e 200 r cos 210 e Y cos Y sin d d R rR r dr 3a e

 

    


= = = −    

Where, we have using     
( )1n

n

0

x )1n(
dxxe +


− +

= 


     to get: 

o

2

p2

0

s2 a27drrRrR −=


    

and 

2 2

0 0 2

0 1

0 0 0 0

1 3 1 3 2 1
Y cos Y sin d d d cos sin d 2

4 4 34 4 3

   

        
  

=   =    =     .          

 

Eq. (4) becomes  
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( )1 o

o

0 3a e
H

3a e 0

− 
=  

− 
                                                                                            .....(5) 

We diagonalize the perturbation Hamiltonian to get the energies and states: 

(1)

1 o

(1)

o 1

E 3a e
0

3a e E

− −
=

− −

 

( )
2

(1)
2

1 oE 3a e
 

= 
 

 

(1)

1 o E 3e  a = 
 

The perturbed energy states are shown in Fig.1. Note that the perturbation has lifted some 

of the degeneracy, but not all of it; two states remain degenerate. The 12p  states are not 

shifted, and those eigenstates remain the same. The 2s  and 02p states are mixed by the 

perturbation 
 

 

Fig(1): Stark effect in the hydrogen n=2 state. 

   
 
H.W. Find the eigenstates of the perturbation Hamiltonian in the above equations. 
 

EX. A two-dimensional isotropic oscillator has the Hamiltonian 

( )( )22

2

2

2

22

yxbxy1k
2

1

yxm2
Ĥ +++












+




−=


 

a) If b=0, write down the energies of the three lowest levels, stating the degeneracy 

in each case. 
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b) If b is small positive number such that b<<1, find the first perturbation corrections 

to the energy of the three lowest states. Where the zeroth order wavefunction of 

the three lowest states are given below, respectively:   

 
k

)x( e 2

kx4/1
)0(

0

2













 −









= 


 


,    x

k2k
)x( e 2

kx2/14/1)0(

1

2













 −

















= 


 


,   1x

k2

2

1k
)x( e 2

kx
2

4/1)0(

2

2













 −









−








= 


 


 

Soln. 

( ) ( )
2 2 2

0 2 2

2 2

1
Ĥ k x y

2m x y 2

  
= − + + + 

  
   ,        ( ) ( )1 3 31

Ĥ kb x y xy
2

= +  

a) If b=0 → ( )1
Ĥ 0=  

( )
(0) (0) (0)

0

nĤ k E k=    →  
( )

(0) (0) (0) (0) (0)
0

x y n x yĤ n n E n n=  

The energy of the 2-Dimensional harmonic oscillator is given by:
 









+++=

2

1
n

2

1
nE yxnn

)0(

yx
        ( )1nE n

)0(

+=   

1-For ground state n=0   → 
(0)

0E =   non-degenerate state 

2-For first excited state n=1  → 2E
)0(

1 =  two-fold degenerate (double degenerate) state  

       nx        ny          n 

       0         1        1 

       1         0        1 

3-For second excited state n=2  → 3E
)0(

2 =   three-fold degenerate (triply degenerate) 

state 

       nx         ny            n    

       2         0          2 

       1         1          2 

0       2          2 
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b)  If b<<1 

1-For the ground state, n=0, the first order correction to the energy is:    

( )
(1) (0) (0)

1

k
ˆE k H k=  

(1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
3 3 3 3

n x y x y x x y y x x y y

1 1 1
E kb n n x y xy n n kb n x n n y n kb n x n n y n

2 2 2
= + = +  

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0(1)
1 3 3 3 3

0

1 1 1ˆE 0 0 H 0 0 kb 0 0 x y xy 0 0 kb 0 x 0 0 y 0 kb 0 x 0 0 y 0 0
2 2 2

= = + = + =  

2-For the first excited state, n=1, 

( ) ( ) ( ) ( )0 0 0 0(0)

1 21 1 0 c 0 1 c= +  

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

0 0 0 0 0 0 0 0(1)
1 1

1

0 0 0 0 0 0 0 0 (1)
1 1

1

ˆ ˆ1 0 H 1 0 E 1 0 H 0 1

0

ˆ ˆ0 1 H 1 0 0 1 H 0 1 E

−

=

−

 

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )0 0 0 0 0 0 0 0
1 1ˆ ˆ1 0 H 1 0 0 1 H 0 1 0= =  

 
 (Why)              

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0(1)
1 3 3

1

1ˆE 1 0 H 0 1 kb 1 x 0 0 y 1 1 x 0 0 y 1
2

 
=  =  + 

 
 

21/4
(0) kx

2
0

k
(x)  e 

 

 −
  
 

 
=  
 

,      x
k2k

)x( e 2

kx2/14/1)0(

1

2













 −

















= 


 


 

( ) ( ) 2
3

1/2 1/20 0 kx 2
3 4k 2k 3

1 x 0 x dx
k8

e 


  

  −
  
 

−

     
=  =     
     


 

( ) ( ) 21/2 1/2 1/20 0 ky
2k 2k 1

0 y 1 y dy
k2

e 


  

  −
  
 

−

     
=  =     
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( ) ( ) 21/2 1/2 1/20 0 kx
2k 2k 1

1 x 0 x dx
k2

e 


  

  −
  
 

−

     
=  =     
     


 

( ) ( ) 2
3

1/2 1/20 0 ky 2
3 4k 2k 3

0 y 1 y dy
k8

e 


  

  −
  
 

−

     
=  =     
     


 

k

b

4

3

k8

3

k2

1

k2

1

k8

3
kb

2

1
E

22
2

3
2/12/1

2

3
)1(

1

 
=






























































+















































=  

3-For the second excited state n=2   

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

0 0 0 0 0 0 0 0 0 0 0 0(1)
1 1 1

2

0 0 0 0 0 0 0 0 0 0 0 0(1)
1 1 1

2

0 0 0 0 0 0 0 0 0 0 0 0 (1)
1 1 1

2

ˆ ˆ ˆ2 0 H 2 0 E 2 0 H 1 1 2 0 H 0 2

ˆ ˆ ˆ1 1 H 2 0 1 1 H 1 1 E 1 1 H 0 2 0

ˆ ˆ ˆ0 2 H 2 0 0 2 H 1 1 0 2 H 0 2 E

−

− =

−

 

Similarly, 

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1ˆ ˆ ˆ ˆ ˆ2 0 H 0 2 1 1 H 1 1 0 2 H 0 2 2 0 H 0 2 0 2 H 2 0 0= = = = =  

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

0 0 0 0(1)
1

2

0 0 0 0 0 0 0 0(1)
1 1

2

0 0 0 0 (1)
1

2

ˆE 2 0 H 1 1 0

ˆ ˆ1 1 H 2 0 E 1 1 H 2 0 0

ˆ0 0 2 H 1 1 E

−

− =

−

 

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )
2 2

0 0 0 0 0 0 0 0(1) (1)
1 1

2 2
ˆ ˆE E 0 2 H 1 1 2 0 H 1 1 0

 
 − − =
 
 

 

There are three eigenvalues:   
( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

1/2
2 2

0 0 0 0 0 0 0 0(1)
1 1

2
ˆ ˆE 0 2 H 1 1 2 0 H 1 1

 
 =  +
 
   

and  0E
)1(

2 =                   
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H.W.  Determine  
( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

1/2
2 2

0 0 0 0 0 0 0 0(1)
1 1

2
ˆ ˆE 0 2 H 1 1 2 0 H 1 1

 
 =  +
 
 

 

 

6.3. Variational method 

Variational principle which is also called Rayleigh-Ritz method, states that the expectation 

value of a given Hamiltonian Ĥ  in any state using any trial (approximate) wave function 

  is always greater or equal to the exact ground-state energy 0 . 

0

Ĥ d

d

  

  









                                             ……(6-3-1)  

The equality condition in equation (6-3-1) holds if   is the exact ground state. 

The variational method is particularly useful for determining the ground state energy and 

its eigenstate without explicitly solving the Schrödinger equation. 

In general, we do not know the exact ground state energy 0 , and wish to find an 

approximation for its value.  

To prove equation (6-3-1), we assume that we know the exact solutions i  to the 

Schrödinger’s equation, 

 

i i iĤ  ,  i=0, 1, 2, ...,  =                                                                                 ……(6-3-2) 

Expand the trial wave function  in terms of the exact eigenstates i  of Ĥ .                   

i i

i

C =                                                                                          ……(6-3-3)           

The expectation value of the Hamiltonian Ĥ  in the trial wave function  is: 

2 2

i i i i

i i

2 2

i i

i

i

i

ˆC H d CĤ d
ˆE H

d C C

  

  






 

= = = =
 

 
                     ……(6-3-4) 
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Subtract both sides of equation (6-3-4) from 0  

2

i i

i
0 02

i

i

C

E
C

− = −



                                    ……(6-3-5) 

 

Since 
2

iC  always positive or zero, and i 0  for non-degenerate bound systems, we 

have, 

0E                                                                                                            ……(6-3-6) 

   
Or can be written as 
 

0

Ĥ d

d

  

  









                           ……(6-3-7) 

 
 

By the variational principle, our approximation Ĥ using any trial wavefunction  will 

always be greater than the exact ground value 0 . Hence, the lower the expectation value 

Ĥ (i.e., the closer to the exact value), the better the trial wave function.  

 
A typical varitaional calculation is as follows:  
 
1- We first choose a trial wavefunction with a few variational (adjustable) parameters 

 , , 21          i.e  ( )1 2,  ,      

 

2- Calculate the expectation value of Ĥ  in the ( )1 2,  ,     , this yields an expression 

which depends on the parameters  , , 21   : 

( )
( ) ( )

( ) ( )

1 2 1 2

1 2

1 2 1 2

ˆ,  ,  H ,  ,  d
E ,  ,  

,  ,  ,  ,  d

      
 

      




=



                                       ……(6-3-8)  

3- Using (6-3-8) to search for the minimum of ( ) , ,E 21   by varying the adjustable 

parameters 1 2,  ,     until E is minimized.  

( ) 0 , ,E 21 =             ……(6-3-9) 
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or 

( ) ( ) ( )

( ) ( )

1 2 1 21 2

i i 1 2 1 2

ˆ,  ,  H ,  ,  dE ,  ,  
0

,  ,  ,  ,  d

       

        





 
= =

 




                         ……(6-3-10) 

This gives the values of  , , 21   that minimize E. 

4- Substitute these values of  , , 21   into (6-3-8) to obtain the approximate value of the 

energy. The value E that obtained provides an upper bound for the exact state energy. 

The exact eigenstate will then be approximated by the state ( )1 2,  ,     . 

 

Now, we can prove that the using of method of linear variations is equivalent to the 

construction of the matrix formulation E=HC C  of the Schrödinger equation Ĥ E = . 

Let us assume that a set of basis functions i , i=1, 2, n  has been chosen, in which i  

are linearly independent, but not necessarily orthogonal or normalized. The trial wave 

function   can be written as 

n

i i

i

C =                                                                                        (6.3.11)  

The energy expectation value of  , 

Ĥ d
E

d

  

  




=



                                                                                      (6.3.12)  

or can be written as 

E =
†

†

C HC

C SC
                                                                                                          (6.3.13) 

where, H  and S  are the Hamiltonian matrix and the overlap matrix, respectively, their 

elements given by:  
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*

ij i j
ˆH H d=                                                                                         (6.3.14)  

and 

*

ij i jS d=                                                                                          (6.3.15)  

, and C is the column vector of the expansion coefficient C.  

In order to minimize E, we wish to ensure that  

*

i

E
0

C


=


                                                                                                               (6.3.16) 

carrying out the above condition into Eq. (6.3.13) gives 

( ) ( ) ( )
i i i

E
E

C C C  

   
+ = 

   

† † †
C SC C SC C HC                                                              (6.3.17) 

however,  

( )
n n n

i ij j ij j

i j ji i

C S C S C
C C



 

  
= = 

   
 †

C SC                                                               (6.3.18) 

and similarly, 

( )
n n n

i ij j ij j

i j ji i

C H C H C
C C



 

  
= = 

   
 †

C HC                                                            (6.3.19) 

Substitute the results of Eqs. (6.3.18) and (6.3.19) into Eq. (6.3.17), and applying the 

condition in Eq. (6.3.16), then Eq (6.3.17) becomes 

n n

ij j ij j

j j

E S C H C=                  

( )
n

ij ij j

j

H ES C 0,            j=1, 2, n− =                                                                          (6.3.20)                                                

We may rewrite the above equation in matrix form, 
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E=HC SC                                                                                                              (6.3.21)   

 

EX: Use the variational method to estimate the energies of (a) the ground state, and (b) 

the first excited state for a one-dimensional harmonic oscillator. Hint: take the trial function 

for the ground state and first excited state to be Gaussian function i.e., 
2x

o (x, ) Ae   −=

and 
2x

1(x, ) B x e   −=   respectively, where A and B are normalization constants.  

Soln. 

a) Using 
2

o (x, ) dx 1 


−

=  
to find the normalization constant 

22 2 xA e dx 1


−

−

=  

( )
1

2
A

2/1

2 =



   →   

( )



2/1

2 2
A =  →  

4/1
2

A 







=




       

    
2

1/4
x

o

2
  (x, ) e


 



− 
 =  

 
 

22

2

22

xm
2

1

dx

d
Ĥ

m2
+−=


 

( )
2 2

1/2 2 2
x 2 2 x

o o o 2

2 d 1ˆE (x, )H (x, )dx e m x e dx
dx 22m

 
     



 

 − −

− −

  
= =   

   
− +   

( )





8

m

m2
E

22

o +=


       

( )
0

8

m

m28

m

m2

E
2

2222

o =−=







+




=
















 
     →     

2

m 2
 =  


2

1
Eo =       and    













 −









=




2

xm4/1

o

2

e
m

)x(






  

The ground state energy and wave function obtained by the variational method are 

identical to their exact counterparts. 
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b) 
2x

1 Bxe)x(  −=  

Using 
2

1(x, ) dx 1 


−

=
 
to find the normalization constant 

1/4
332

B




 
=  
 

,      
2x

4/1
3

1 xe
32

),x( 




 −









=  

( )
2 2

1/2
3 2 2

x 2 2 x

1 1 1 2

32 d 1ˆE (x, )H (x, )dx e x m x xe dx
dx 22m

 
     



 

 − −

− −

   
= =    

   
− +   

          ( )


−

−−−

















= +− dxexm

2

1
xe

dx

d

dx

d
xe

32 222 x32x
2

x

2/1
3

m2
 



 
 

         ( )


−

−−−−









−
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2

1
ex2e

dx

d
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32 2222 x32x2x
2

x

2/1
3

m2
 



 
 

        ( )( )
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2

1
ex2xe22xe2xe
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2
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−
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−
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−
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m2

3
E
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The minimization of ( )1E  with respect to  , i.e 

( )
0

3E

28

2m

m28

2m

m2
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1 =−+ =
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