Autophagy and its Various Roles in Health and Diseases

By: Dr. Firas Subhi Saleh Cancer Research Department Iraqi Center for Cancer and Medical Genetics Research (ICCMGR) Mustansiriyah University

18. Jun. 2020

Chronology

The Nobel Assembly at Karolinska Institutet has today decided to award the

2016 NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE

Yoshinori Ohsumi

18:00 The

675

Nobelprize.org

20

00

Cellular Homeostasis

Requirements:

- constant turnover of continuous synthesis of cellular components
- clearance of damaged or superfluous proteins and organelles.

Phagocytosis

Autophagy is

totally different

Phagosome Bacteria SE . Nucleus Macrophage Phagolysosome Debris

Macrophage

What is Autophagy?

"Self-eating"

From the Greek words, auto "self" and phagein "to eat"

"Catabolic process through which the cell recycles its own constituents"

"Pathway that lead to the elimination of cytoplasmic components by delivering them into lysosomes"

"The body's way of cleaning out damaged cells, in order to regenerate newer, healthier cells"

Types of Autophagy

Wirawan et al., Cell Res., 2012

Micro-autophagy

- By invagination of the lysosome membrane, cytosolic components are directly taken up by the lysosome itself through.
- It could be selective or non-selective.

Microautophagy

proteins, lipids, organelles

Types of Autophagy

Chaperone-mediated autophagy (CMA)

 Targeted proteins are translocated across the lysosomal membrane in a complex with chaperone proteins (such as Hsc-70) that are recognized by the lysosomal membrane receptor lysosomal-associated membrane protein 2A (LAMP-2A), resulting in their unfolding and degradation.

Chaperon-mediated autophagy

Types of Autophagy

Macro-autophagy

- Delivers cytoplasmic cargo to the lysosome through autophagosome (a double membrane-bound vesicle)
- Autophagosome fuses with the lysosome to form an autolysosome.
- It could be selective or non-selective.

• The most important type is macro-autophagy, referred to as autophagy.

Mechanism of Autophagy

Phagophore

Denton et al., Immunol Cell Biol., 2015

Multiple Functions of Autophagy

- Occurs in all eukaryotic cells
- Bulk degradative process that ends in lysosomes
- Degradation of intracellular components

Recycling and Cleaning

Autophagy Signalling Pathway

How can We Monitor Autophagy?

<u>EM</u>

IF LC3

How can We Monitor Autophagy?

How can We Monitor Autophagy?

Dynamic regulation of autophagy

Mizushima et al, Cell, 2010

Induction of Autophagy

Induction of Autophagy

Autophagy and Oxidative Stress in Smokers:

- Our results:

Groups	Non-Smoker (24)	Smoker (55)	P Value
Beclin 1	1.95±0.17	12.27±1.57a	<0.0001
Atg5	0.69±0.12	3.00±0.52	<0.0001
LC3 I	0.87±0.17	3.43±0.50	<0.0001
LC3 II	1.67±0.18	4.64±0.38	<0.0001

Autophagy and Diseases

Klionsky DJ, Dev Cell. 2010

Autophagy and Aging

Autophagy and Aging

Systemic Anti-Aging Effects of Autophagy

Autophagy can reduce age-related dysfunctions through systemic effects. Autophagy may contribute to the clearance of intracellular pathogens and the function of antigen-presenting cells (left), reduce inflammation by several mechanisms (middle), or improve the function of neuroendocrine circuits (right).

Autophagy and Neurodegenerative Diseases

- Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) share common features, such as neuronal dysfunction, synapse damage and mechanisms involving death pathways.
- These disorders are characterized by progressive neuronal loss and by deposits of abnormal proteins in the brain, in the form of aggregates or plaques.

Autophagy and Apoptosis

Autophagy and Apoptosis

Mariño et al., Nat Rev Mol Cell Biol 2014.

Nature Reviews | Molecular Cell Biology

Autophagy and Cancer

The connections between autophagy and cancer occur at two aspects:

First at the level of tumor initiation and progression, Second during cancer treatment.

Autophagy in Tumor Initiation and Progression

The role of autophagy in cancer is complex and likely tissue and genetic context-dependent.

Principal signalling pathways involved in the autophagy-related cancer interconnections

Autophagy and chemotherapy resistance

A summary of the approaches by which cancer cells become resistant to chemotherapy and various kinds of genotoxic or metabolic stresses

X Sui et al., Cell Death Dis., 2013

Autophagy induction have been found to spatially localize to:

The strategies for autophagy inhibition

Strategies	Target	The effect on autophagy
Pharmacological appro	paches	
Chloroquine	Lysosomal pH	Inhibit autophagosome fusion with lysosomes and autophagosome degradation
Hydroxychloroquine		Inhibit autophagosome fusion with lysosomes and autophagosome degradation
Monensin	Change endocytic and lysosomal pH	Inhibit the initiation/expansion stage of autophagy
Bafilomycin A 1	Class III PI3K inhibitor	Inhibit the initiation/expansion stage of autophagy
3-Methyladenine	Class III PI3K inhibitor	Inhibit the initiation/expansion stage of autophagy
Wortmannin	Class III PI3K inhibitor	Inhibit the initiation/expansion stage of autophagy
LY294002	Class III PI3K inhibitor	Inhibit the initiation/expansion stage of autophagy
Pyrvinium	Class III PI3K inhibitor	Inhibit the initiation/expansion stage of autophagy
	tophagy regulatory genes	Inhibit the initiation/expansion stage of autophagy

Therapeutic Agent	Model	Autophagy Inhibition	Response		
Temozolomide	Human malignant glioma cell lines	3-Methyladenine	Decreased cytotoxicity		
		Bafilomycin A	Increased cytotoxicity		
Cyclophosphamide	Murine Myc-induced lymphoma cancer	Chloroquine	Increased antitumor response		
5-Fluorouracil	Human colon cancer cell lines	3-Methyladenine	Increased apoptosis		
5-Fluorouracil	Human colon cancer cell lines and xenograft	3	Increased cytotoxicity		
5-Fluorouracil	Human colon cancer cell line (HT29)	Chloroquine	Increased cytotoxicity		
5-Fluorouracil	Human hepatic carcinoma cell lines	3-Methyladenine	Increased apoptosis		
5-Fluorouracil	Murine colon cancer cell line and tumor xenograft	Chloroquine	Increased apoptosis		
5-Fluorouracil	Human NSCLC cell line (A549)	3-Methyladenine	Increased apoptosis		
Cisplatin	Esophageal SSC cell line (EC9706)	3-Methyladenine	Increased apoptosis		
Cisplatin	Human cholangiocarcinoma cell lines	3-Methyladenine Wortmannin	Increased cytotoxicity		
Cisplatin	Human cervical cancer cell line (HeLa)	3-Methyladenine Chloroquine	Increased apoptosis		
Cisplatin	Human hepatic carcinoma cell lines	3-Methyladenine	Increased apoptosis		
Cisplatin	Laryngeal cancer cells (Hep-2)	3-Methyladenine	Increased apoptosis		
Cisplatin	Human NSLC cell line (A549)	3-Methyladenine	Increased apoptosis		
Oxaliplatin	Human colon cancer cell lines and xenograft	Chloroquine	Increased cytotoxicity and tumor control		
Paclitaxel	Human NSLC cell line (A549)	3-Methyladenine	Increased apoptosis		
Etoposide	Human hepatocellular carcinoma cell line (HepG2)	3-Methyladenine	Increased cytotoxicity		
Doxorubicin	Human multiple myeloma cell lines, patient- derived multiple myeloma cells, human plasmacytoma xenograft	Hydroxychloroquine 3-Methyladenine	Increased apoptosis		
Epirubicin	Human breast cancer cell line (MCF7)	Bafilomycin A	Increased apoptosis		
Melphalan	Human multiple myeloma cell lines, patient- derived multiple myeloma cells, human plasmacytoma xenograft	Hydroxychloroquine 3-Methyladenine	Increased apoptosis		
Topotecan	Human NSLC cell line (A549)	Chloroquine	Increased cytotoxicity		
Camptothecin	Human breast cancer cell lines	Wortmannin 3-Methlyadenine Bafilomycin A	Increased apoptosis in selective cell lines		

Therapeutic Agent	Model	Autophagy Inhibition	Response		
Imatinib	Human glioma cell lines	3-Methyladenine Bafilomycin A	Decreased cytotoxicity Increased cytotoxicity		
Imatinib	Human Philadelphia chromosome positive CML cells	Chloroquine	Increased cytotoxicity		
HDACi/vorinostat	Human colon cancer cells and xenografts	Chloroquine	Increased cytotoxicity Decreased growth		
HDACi/panobinostat	Human triple negative breast cancer cells and xenografts	Chloroquine	Increased cytotoxicity Decreased tumor growth		
HDACi/SAHA	Human CML cell lines and primary CML cells	Chloroquine	Increased cytotoxicity		
HDACi/valproic acid	Human t(8;21) acute myeloid leukemia cells	Chloroquine	Increased cytotoxicity		
HSP90i/DMAG	Human multiple myeloma cell lines	3-Methyladenine	Increased cytotoxicity		
Erlotinib	Human glioblastoma cell lines	Chloroquine	Increased cytotoxicity		
Sorafenib	Human hepatocellular carcinoma cell lines and xenografts	Chloroquine 3-Methyladenine	Increased cytotoxicity and decreased tumor growth		
Sorafenib	Human hepatocellular carcinoma cell lines and xenografts	Chloroquine	Increased cytotoxicity and decreased tumor growth		
Sunitinib	Rat PC12 cells	Ammonium chloride	Increased cytotoxicity		
AKTi/AZD5363	Human prostate cancer cell lines and xenograft	3-Methyladenine Chloroquine Bafilomycin A	Increased cytotoxicity and decreased tumor growt		
METi/PHA665752 and EMD1214063	Human gastric adenocarcinoma cell line	3-Methyladenine	Increased cytotoxicity		
Vandetanib	Human glioblastoma cell lines and xenograft	3-Methyladenine Chloroquine	Increased cytotoxicity and decreased tumor growth		
Bevacizumab	Human hepatocellular carcinoma xenografts	Chloroquine	Decreased tumor growth		
Bortezomib	Human multiple myeloma cell line (U266)	3-Methyladenine Bafilomycin A	Decreased cytotoxicity Increased cytotoxicity		
Bortezomib	Human hepatocellular carcinoma cell lines and xenografts	Chloroquine	Increased apoptosis		

Table 2 Active clinical trials combining the autophagy inhibitor HCQ with anticancer therapies

Identifier	Cancer type	Drugs	Phase	Title
NCT00969306	NSCLC	CQ+cisplatin Etoposide	1/11	Cisplatin, etoposide and escalating CQ in extensive disease SCLC
NCT00809237	NSCLC	HCQ + gefitinib	1/11	Hydroxychloroquine and gefitinib to treat lung cancer
NCT01649947	NSCLC	HCQ + paclitaxel and	11	Modulation of autophagy in patients with advanced/recurren
		carboplatin		non-small-cell lung cancer – phase II
NCT00977470	Advanced NSCLC and	HCQ + erlotinib	11	Erlotinib with or without hydroxychloroquine in chemonaive
	(EGFR) mutations			advanced NSCLC and (EGFR) mutations
NCT00933803	Advanced or recurrent	HCQ + carboplatin, paclitaxel,		Carboplatin, paclitaxel, bevacizumab and HCQ in advance
	NSCLC	bevacizuma		or recurrent NSCLC
NCT01292408	Breast cancer	HCQ	11	Autophagy inhibition using hydroxychloroquine in breast
	_			cancer patients
NCT00765765		HCQ + ixabepilone	1/11	Ixabepilone and HCQ in metastatic breast cancer
NCT01023477		CQ + tamoxifen	1/11	Neoadjuvant tamoxifen, tamoxifen + CQ, or CQ in DCIS
NC101510119	Renal cell carcinoma	HCQ and RAD001(p.o. 10 mg/ day)	1/11	Autophagy inhibition to augment mTOR inhibition: a phase I II trial of RAD001 and hydroxychloroquine in patients with previously treated renal cell carcinoma
	Renal cell carcinoma	HCQ + high dose interleukin-2	1	Study of hydroxychloroquine before surgery in patients with
101144109	Renal cell carcinoma	and other systemic therapies		primary renal cell carcinoma
NCT01550367	Renal cell carcinoma	HCQ + IL-2	1/11	Study of hydroxychloroquine and aldesleukin in renal cell
101000007	Renal cell carcinoma	1100 + 12-2	1711	carcinoma patients (RCC)
NCT00726596	Prostate cancer	HCQ		Hydroxychloroquine in treating patients with rising PSA
10100/20000	1 loolato ou lool	noa		levels after local therapy for prostate cancer
NCT01128296	Pancreatic cancer	HCQ + gemcitabine	1/11	Study of presurgery gemcitabine + hydroxychloroquine
				(GcHc) in stage IIb or III adenocarcinoma of the pancreas
NCT01273805	Pancreatic cancer	HCQ	11	Hydroxychloroquine in previously treated patients with
				metastatic pancreatic cancer
NCT01506973	Pancreatic cancer	HCQ + gemcitabine/abraxane	1/11	A phase I/II/pharmacodynamic study of hydroxychloroquine
				in combination with gemcitabine/abraxane to inhibit autop-
				hagy in pancreatic cancer
NCT01128296	Pancreatic cancer	HCQ + gemcitabine	1/11	Study of Pre-surgery Gemcitabine + hydroxychloroquine
_				(GcHc) in stage lib or III adenocarcinoma of the pancreas
NCT01494155	Pancreatic cancer	HCQ + capecitabine + photon	11	Short-course radiation therapy with proton beam capecita-
		radiation		bine and hydroxychloroquine for resectable pancreatic
			1/11	cancer
NC101206530	Colorectal cancer	HCQ + FOLFOX/ bevacizumab	1/11	FOLFOX/Bevacizumab/Hydroxychloroquine (HCQ) in col- orectal cancer
NCT01006369	Metastatic colorectal	HCQ + capecitabine, oxalipla-		Hydroxychloroguine, capecitabine, oxaliplatin, and bevaci-
101000000	cancer	tin, and bevacizumab		zumab in treating patients with metastatic colorectal cance
NCT00224978		CQ	111	Adjuvant CQ versus placebo in glioblastoma
NCT00486603		HCQ + temozolomide	1/11	Adjuvant radiation, temozolomide and HCQ in newly
				resected GBM
NCT00962845	Melanoma	HCQ	No	Hydroxychloroquine in patients with stage III or Stage IV
			phase	melanoma that can be removed by surgery
			specified	
NCT00568880	Multiple myeloma	HCQ + bortezomib	1/11	Hydroxychloroquine and bortezomib in treating patients with
				relapsed or refractory multiple myeloma
NCT01480154		HCQ + MTD of Akt inhibitor	1	Phase I study of Akt inhibitor MK2206 and hydroxychlor-
	prostate or renal cancer	MK2206 (MK-2206)		oquine in patients with advanced solid tumors or prostate o
				renal cancer
NC100909831	Metastatic solid tumors	HCQ + temsirolimus	I I	Hydroxychloroquine and temsirolimus in treating patients
				with metastatic solid tumors that have not responded to
	Advanced solid tumors			treatment
NC100813423	Advanced solid lumors	HCQ + sunitinib		Sunitinib and Hydroxychloroquine in treating patients with advanced solid tumors that have not responded to
				chemotherapy
NCT01022727	Advanced solid tumors	HCQ + vorinostat		Vorinostat and HCQ in advanced solid tumors
	Solid tumors undergoing	HCQ		Hydroxychloroquine in treating patients with solid tumors
10101010100	radiation therapy for bone	nog		undergoing radiation therapy for bone metastases
	metastases			dracing radiation therapy for some metablaces
NCT01266057	Advanced cancer	HCQ + the highest tolerable	1	Sirolimus or vorinostat and hydroxychloroguine in advanced
		dose of sirolimus or vorinostat		cancer
NCT00714181	Metastatic or unresect-	HCQ + temozolomide	1	Hydroxychloroquine and temozolomide in treating patients
	able solid tumors			with metastatic or unresectable solid tumors
NCT01227135	CML	HCQ + imatinib	11	Imatinib mesylate with or without hydroxychloroquine in
				treating patients with chronic myeloid leukemia
NCT01634893	Ovarian cancer	HCQ + sorafenib	1	Oral hydroxychloroquine plus oral sorafenib to treat epithelia
				ovarian cancer FIGO stage III or stage IV, or extraovarian
				peritoneal carcinoma, or fallopian tube carcinoma failing or ineligible for first-line therapy

NSCLC, non-small-cell lung cancer; CML, chronic myeloid leukemia; EGFR, epidermal growth factor receptor; MTD, maximum tolerated dose; HCQ, hydroxychloroquine

The molecular mechanisms of autophagy activation in response to chemotherapeutic agents. The activation of autophagy either leads to cancer cell chemoresistance via EGFR signaling, PI3K/AKT/ mTOR pathways, p53, VEGF, MAPK14/p38α signaling and microRNA or potentiates autophagic cell death through AMPK/AKT1/mTOR axis, which depends on the tumor types and treatment characteristic

			onal Library of Medicine Trials.gov		Find Studies 🔻	About Studies ▼	Submit Studies ▼ Res	sources 🔻 A	bout Site 🔻	
	Hor	ne > Search	n Results							
	Мо	dify Search	Start Over						+]
				72 Studies t Also searched for Neopla	ound for: autopha sm, Tumor, and O		<u>)etails</u>			
	ist w Filters	By Topic	On Map Search Details					및 Downloa	ad	ribe to RSS
Showin	g: 1-10	of 72 studies	10 • studies per page						Show/Hid	de Columns
Row	Saved	Status		Study Title			Conditions	Interv	ventions	Phase
1		Not yet recruiting	Autophagy Bladder Cancer				Bladder Cancer			
2		Unknown †	Autophagy Inhibition Using Hydr	ochloroquine in Breast <mark>Cancer</mark> Pa	tients		 Breast Cancer 	Drug: Hydro	chloroquine	Phase 2
3		Completed Has Results	Modulation of Autophagy in Pation	ents With Advanced/Recurrent Nor	-small Cell Lung <mark>Ca</mark> r	<mark>icer</mark> - Phase II	Non-small Cell Lung Cancer Advanced Non-small Cell Lung Cancer Recurrent Non-small Cell Lung Cancer	 Prug: Paclit Drug: Carbo Drug: Hydro Drug: Bevac 	platin xychloroquine	Phase 2

Fasting and calorie restriction

Both trigger autophagy by putting cells under stress.

Exercise

Exercise also puts the body's cells under stress. When people exercise, the components of their cells become damaged and inflamed.

There is evidence that exercise increases autophagy in human skeletal muscles.

Curcumin

Scientists have also suggested that curcumin intake triggers autophagy, at least in studies involving mice. For example, one animal study reported that curcumin-induced restoration of autophagy could protect against diabetic cardiomyopathy, a disorder of the heart muscles that affects people with diabetes.

Thank you for attention

firas.salah@iccmgr.org

-