CYTOGENETIC & CHROMOSOME

By; • Lecturer • **AMAL M. ALI** • 2016 •

Definition

Cytogenetic is the study of genetic material of cell

CYTOGENETICS

The study of chromosome and the related disease states caused by abnormal chromosome number and\or structure.

What are chromosomes?

Chromosomes are the cellular structures that carry genes **Chromosomes are** distinct dense bodies found in the nucleus of cells, composed of protein and DNA.

What are chromosomes ^(Cont)

- The total number of bases in all the chromosomes of a human cell is approximately six billion and individual chromosomes range from 50 to 250 million base.
- The DNA sequence for a single trait is called a **gene**.
- Each chromosome contains a few thousand genes.
- The estimate for the number of genes in humans are thought to be between 30,000 and 40,000 genes.
- Genes can be as short as 1000 base pairs or as long as several hundred thousand base pairs. It can even be carried by more than one chromosome.

What are chromosomes [§](Cont)

The number of chromosomes in human cells is 46 with 22 autosomal pairs (one of each type contributed by the mother and one of each type from the father) and 2 sex chromosomes - 2 X chromosomes for females (one from father and one from mother) or an X and a Y chromosome for males (the X from the mother and the Y from the father).

Cytogenetic Nomenclature

Each chromosome is visualized as two chromatids that are joined at a central constriction called the centromere.

The centromere divides the chromosomes into two arms: a short arm (P) and a long arm (q)

Chromosomes are divided into 7 groups, A.....G

- **Group A: 1,2,3**
- **Group B: 4,5**
- **Group C: 6-12, x**
- **Group D: 13,14,15**
- **Group E: 16,17,18**
- **Group F: 19,20**
- **Group G: 21,22,Y**

Identifying features of a chromosome

Size (large, medium, small)
Position of centromere metacentric acrocentric submetacentric
Banding pattern

Identifying features of a chromosome

Chromosome bands: part of a chromosome that is distinguished from adjacent parts by appearing darker or lighter with one or more banding techniques

 In high resolution banding, bands are divided into sub-bands. (1q31.1).

The chromosomes are most easily seen and identified at the metaphase stage of cell division.

2. Metaphase

Conventional Cytogenetic Analysis

Metaphase spread

CHROMOSOMES BANDING

Туре	Stain	Area Stained	Effect		
Q-banding	Quinacrine	Chromosome arms; mostly repetitive AT-rich DNA	Under UV light, distinct fluorescent banded pattern for each chromosome.		
G-banding	Giemsa	Chromosome arms; mostly repetitive AT-rich DNA	Distinct banded pattern for each chromosome; same as Q- banding pattern except single additional band near centromere of chromosomes 1 and 16		
R-banding	Variety of techniques	Chromosome arms; mostly unique GC-rich DNA	Reverse banding pattern of that observed with Q- or G-banding		
C-banding	Variety of techniques	Centromere region of each chromosome and distal portion of Y chromosome; highly repetitive, mostly AT-rich DNA	Largest bands usually on chromosomes 1, 9, 16, and Y; chromosomes 7, 10, and 15 have medium-sized bands; size of C-bands highly variable from person to person		

A karyotype: Arrangement of chromosomes from a particular cell, the largest chromosomes are first and the smallest ones are last.

It is a description of the number and structure of the chromosomes.

		8	}				
1	2	3				4	5
K	38		22	1		55	医袋
6	7	8	9		10	11	12
ÂĐ	66	8ê		8	88	22	68
13	14	15			16	17	18
28	22	6 4	2	66		28	
19	20	21	1	22		х	Y

Chromosomal abnormalities

- Numerical: A karyotype with abnormal No. of chromosomes.
- Structural: Alterations in the structure of chromosomes.

CHANGES IN NUMBER, OR SETS, OF CHROMOSOMES

- A) Polypoidy change in complete sets of chromosomes (3n, 4n, etc)
 - plants > animals.
- B) Aneuploidy change in the no. of chromosomes
- nullisomy 2n-2
- monosomy 2n-1
- trisomy 2n+1
- tetrasomy 2n+2
 - Gene dosage effect
 - 1- Sex-chromosomal aneuploids.
 - 2- Autosomal aneuploids .

- Diploid cell: A cell with a normal complement of structurally normal chromosomes.
- Pseudodiploid cell: A cell with 46 chromosomes but with numerical chromosomal abnormality (e.g. loss of one chromosome & gain of another) or structural abnormality.
- Aneuploid cell: Cell with abnormal number of chromosomes.

Abbreviations

- del = deletion
- der = derivative
- dup = duplication
 - inv = inversion
 - ins = insertion \blacksquare
 - t = translocation
- add = additional material of unknown origin
- mar = marker chromosome of unknown origin

Interstitial deletion:
loss of internal segment.

7

Terminal deletion loss of tip of chromosome

46,xy,del (5)(q31)

46,xy,del(7)(q22;q32)

Translocation (t): relocation of material from one chromosome to a different chromosome.

Reciprocal: exchange of material between different chromosomes. t(9;22)(q34;q11)

Non-reciprocal: rare

Reciprocal Translocation

Reciprocal Translocation

reciprocal translocation between chromosomes N and M

Non-reciprocal translocation

46,xx,t(9;22)(q34;q11)

46,xy,t(8;21)(q22;q22)

Inversion (inv): it is 180 rotation of a chromosome segment

Pericentric

Paracentric

Pericentric Inversion

 Pericentric:
The inverted segment include the centromere inv (16)(p13;q22)

Paracentric inversion

 Paracentric:
The inverted segment within either the short or long arm inv(3)(q21;q26)

46,xy,inv(16)(p13;q22)

A representative Karyotype from case (No.13) showing 46,XY, inv(16)(p13q22)

 Isochromosome (i): Two identical chromosome arms positioned as mirror images of each other i(17q) Ring chromosome(r):
breaks have occurred in both the short and the long arms and the break points have joined together closed ring

Fragile-X-Syndrome

Thank you

